References:
Abdel-Aal A., Abdel-Baset A. 2010. Venom yield and toxicities of six Egyptian snakes with a description of a procedure for estimating the amount of venom ejected by a single snake bite. Sci J King Faisal Univ, 11: 169–184
Cascardi J., Young B. A., Husic H. D., Sherma J. 1999. Protein variation in the venom spat by the red spitting cobra, Naja pallida (Reptilia: Serpentes). Toxicon, 37: 1271–1279
Chanhome L., Khow O., Puempunpanich S., Sitprija V., Chaiyabutr N. 2009. Biological characteristics of the Bungarus candidus venom due to geographical variation. J Cell Anim Biol, 3: 93–100
Cheng X. X. 1989. Preparation, identification and quality control of snake venom. Chin Med Mat, 12: 30
Daltry J. C., Wüster W., Thorpe R. S. 1996. Diet and snake venom evolution. Nature, 379: 537–540
Dissanayake, D. S., Rajapakse, R. P. V. J., Kularatne, S. A. M. 2015. An evaluation on factors influencing venom yield in spectacled cobra (Naja naja) in Sri Lanka. International Postgraduate Research Conference
Furtado M. F., Travaglia-Cardoso S. R., Rocha M. M. 2006. Sexual dimorphism in venom of Bothrops jararaca (Serpentes: Viperidae). Toxicon, 48: 401–410
Gao J. F. 2010. Identifying factors for intra-specific variation in venom yield, composition and enzymatic activity of venomous snakes. Ph. D. Thesis. Nanjing Normal University
Gao J. F., Qu Y. F., Zhang X. Q., Ji X. 2011. Within-clutch variation in venoms from hatchlings of Deinagkistrodon acutus (Viperidae). Toxicon, 57: 970–977
Gao J. F., Wang J., He Y., Qu Y. F., Lin L. H., Ma X. M., Ji X. 2014. Proteomic and biochemical analyses of short-tailed pit viper (Gloydius brevicaudus) venom: age-related variation and composition–activity correlation. J Proteomics, 105: 307–322
Gibbs H. L., Sanz L., Chiucchi J. E., Farrell T. M., Calvete J. J. 2011. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). J Proteomics, 74: 2169–2179
He Y., Gao J. F., Lin L. H., Ma X. M., Ji X. 2014. Age-related variation in snake venom: evidence from two snakes (Naja atra and Deinagkistrodon acutus) in southeastern China. Asian Herpetol Res, 5: 119–127
Huang H. W., Liu B. S., Chien K. Y., Chiang L. C., Huang S. Y., Sung W. C., Wu W. G. 2015. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics, 128: 92–104
Janes D. N., Bush S. P., Kolluru G. R. 2010. Large snake size suggests increased snakebite severity in patients bitten by rattlesnakes in Southern California. Wild Environ Med, 21: 120–126
Li S. Y., Zhong M. S. 1983. Venom milking and venom yield analysis of Chinese cobra from Guangdong. Acad J Guangzhou Med Univ, 1: 29–31
Lin L. H., Hua L., Qu Y. F., Gao J. F., Ji X. 2014. The phylogeographical pattern and conservation of the Chinese cobra (Naja atra) across its range based on mitochondrial control region sequences. PLoS One, 9: e106944
Mackessy S. P., Sixberry N. M., Heyborne W. H., Fritts T. 2006. Venom of the brown treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon, 47: 537–548
McCleary R. J. R., Heard D. J. 2010. Venom extraction from anesthetized Florida cottonmouths, Agkistrodon piscivorus conanti, using a portable nerve stimulator. Toxicon, 55: 250–255
McCue M. D., Mason R. 2006. Cost of producing venom in three north American pitviper species. Copeia, 2006: 818–825
Mirtschin P. J., Dunstan N., Hough B., Hamilton E., Klein S., Lucas J., Millar D., Madaras F., Nias T. 2006. Venom yields from Australian and some other species of snakes. Ecotoxicology, 15: 531–538
Mirtschin P. J., Shine R., Nias T. J., Dunstan N. L., Hough B. J., Mirtschin M. 2002. Influences on venom yield in Australian tigersnakes (Notechis scutatus) and brownsnakes (Pseudonaja textilis: Elapidae, Serpentes). Toxicon, 40: 1581–1592
Morgenstern D., King G. F. 2013. The venom optimization hypothesis revisited. Toxicon, 63: 120–128
Oh A. M. F., Tan C. H., Ariaranee G. C., Quraishi N., Tan N. H. 2017. Venomics of Bungarus caeruleus (Indian krait): comparable venom profiles, variable immunoreactivities among specimens from Sri Lanka, India and Pakistan. J Proteomics, 164: 1–18
Pintor A. F. V., Krockenberger A. K., Seymour J. E. 2010. Costs of venom production in the common death adder (Acanthophis antarcticus). Toxicon, 56: 1035–1042
Qin G. P. 1998. China poisonous snake research. Guangxi Science and Technology Press, Nanning, China
Queiroz G. P., Pessoa L. A., Portaro F. C. V., Furtado M. F. D., Tambourgi D. V. 2008. Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon, 52: 842–851
Reeks T., Lavergne V., Sunagar K., Jones A., Undheim E., Dunstan N., Fry B., Alewood P. F. 2016. Deep venomics of the Pseudonaja genus reveals inter- and intra-specific variation. J Proteomics, 133: 20–32
de Roodt A. R., Boyer L. V., Lanari L. C., Irazu L., Laskowicz R. D., Sabattini P. L., Damin C. F. 2016. Venom yield and its relationship with body size and fang separation of pit vipers from Argentina. Toxicon, 121: 22–29
de Roodt A. R., Dolab J. A., Galarce P. P., Gould E., Litwin S., Dokmetjian J. C., Segre L., Vidal J. C. 1998. A study on the venom yield of venomous snake species from Argentina. Toxicon, 36: 1949–1957
Shan L. L., Gao J. F., Zhang Y. X., Shen S. S., He Y., Wang J., Ma X. M., Ji X. 2016. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J Proteomics, 138: 83–94
Sintiprungrat, K., Watcharatanyatip, K., Senevirathne, W. D. S. T., Chaisuriya, P., Chokchaichamnankit, D., Srisomsap, C., Ratanabanangkoon, K. 2016. A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteomics, 132: 131–143
Tan, K. Y., Tan, C. H., Fung, S. Y., Tan, N. H. 2015. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics, 120: 105–125
Tan, C. H., Tan, K. Y., Yap, M. K., Tan, N. H. 2017. Venomics of Tropidolaemus wagleri, the sexually dimorphic temple pit viper: unveiling a deeply conserved atypical toxin arsenal. Sci Rep, 7: 43237
Tan, K. Y., Tan, N. H., Tan, C. H. 2018. Venom proteomics and antivenom neutralization for the Chinese eastern Russell’s viper, Daboia siamensis from Guangxi and Taiwan. Sci Rep, 8: 8545
Wong, K. Y., Tan, C. H., Tan, K. Y., Quraishi, N. H., Tan, N. H. 2018. Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J Proteomics, 175: 156–173
Wong, K. Y., Tan, C. H., Tan, N. H. 2016. Venom and purified toxins of the spectacled cobra (Naja naja) from Pakistan: insights into toxicity and antivenom neutralization. Am J Trop Med Hyg, 94: 1392–1399
Xiong Y. L., Wang W. Y., Yang C. J., Xiao F. S., Li W. H. 1992. The analysis of snake venom output and the concerned factor. Zool Res, 13: 73–76
Zhao E. M. 2006. Snakes of China. Anhui Science and Technology Publishing House, Hefei, China