Huihui WANG,Xiaolong TANG,Yan WANG,et al.Function of Lactate Dehydrogenase in Cardiac and Skeletal Muscle of Phrynocephalus Lizard in Relation to High-Altitude Adaptation[J].Asian Herpetological Research(AHR),2018,9(4):258-273.[doi:10.16373/j.cnki.ahr.170075]
Click Copy

Function of Lactate Dehydrogenase in Cardiac and Skeletal Muscle of Phrynocephalus Lizard in Relation to High-Altitude Adaptation
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2018 VoI.9 No.4
Research Field:
Publishing date:


Function of Lactate Dehydrogenase in Cardiac and Skeletal Muscle of Phrynocephalus Lizard in Relation to High-Altitude Adaptation
Huihui WANG1 Xiaolong TANG1* Yan WANG1 Yuxia FENG1 Peng PU1 Shengkang MEN1 Youli ZHAO2 Zhennan PENG3 and Qiang CHEN1*
1 Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou 730000, China
2 Lanzhou University Second Hospital, Lanzhou 730000, China
3 School of Life Science, Lanzhou University, Lanzhou 730000, China
lactate dehydrogenase (LDH) high altitude adaptation anaerobic metabolism Phrynocephalus erythrurus
Poikilothermic animals living in high-altitude environments can be greatly affected by the anaerobic metabolism and lactate recycling, which are catalyzed by an enzyme called lactate dehydrogenase (LDH). However, the function and possible regulatory mechanisms of their anaerobic glycolysis remained elusive. We compared the difference in LDH between a native high-altitude (4 353 m) lizard, Phrynocephalus erythrurus, and a closely related species, Phrynocephalus przewalskii that lives in intermediate altitude environment (1 400 m). The activity of LDH, the concentration of lactate, the distribution of isoenzyme, and the mRNA amounts of Ldh-A and Ldh-B were determined. In cardiac muscle, the lactate-forming activity of P. erythrurus in LDH was higher than of P. przewalskii LDH at all three temperatures tested (10 °C, 25 °C and 35 °C), while lactate-oxidation activity of LDH was significantly different between the two species only at 25 °C and 35 °C. In skeletal muscle, both lactate-forming and lactate-oxidation rates of P. erythrurus were lower than that of P. przewalskii. There was a higher proportion of H subunit and a significantly higher expression of Ldh-B, with a concomitant decrease of lactate concentration in P. erythrurus. These results indicate that P. erythrurus may have a strong potential for anaerobic metabolism, which is likely adapted to the hypoxic environment at high altitudes. Furthermore, P. erythrurus is capable of oxidizing more lactate than P. przewalskii. The Ldh-A cDNA of the two species consists of a 999 bp open reading frame (ORF), which encodes 332 amino acids, while Ldh-B cDNA consists of a 1 002 bp ORF encoding 333 amino acids. LDHA has the same amino acid sequence between the two species, but three amino acid substitutions (V12I, N21S and N318K) were observed in LDHB. Structure analysis of LDH indicated that the substitutions of residues Val12 and Asp21 in P. erythrurus could be responsible for the high-altitude adaptation. The LDH characteristics of LDH in P. erythrurus suggest unique adaptation strategies of anaerobic metabolism in hypoxia and cold environments at high altitudes for poikilothermic animals.


Anderson G., Bullard R. 1971. Effect of high altitude on lactic dehydrogenase isozymes and anoxic tolerance of the rat myocardium. Experimental Biology and Medicine, 138(2): 441–443
Arnold K., Bordoli L., Kopp J., rgen, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2): 195–201
Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Cassarino T. G., Bertoni M., Bordoli L. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1): 252–258
Bickler P. E., Buck L. T. 2007. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol, 69: 145–170
Binette P., Pragay D., Rekate A. 1977. Reverisbility of the lactate dehydrogenase isozyme shift induced by low oxygen tension. Life Sciences, 20(11): 1809–1814
Brand M. D., Couture P., Else P. L., Withers K. W., Hulbert A. J. 1991. Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochemical Journal, 275 ( Pt 1)(1): 81
Brindley A. A., Pickersgill R. W., Partridge J. C., Dunstan D. J., Hunt D. M., Warren M. J. 2008. Enzyme sequence and its relationship to hyperbaric stability of artificial and natural fish lactate dehydrogenases. Plos One, 3(4): e2042
Brooks G. A. 1987. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Federation Proceedings, 45(13): 2924–2929
Bushong F. W. 1966. Tissue lactic dehydrogenase isozymes. Developmental patterns in the neonatal rat. Canadian Journal of Biochemistry, 44(5): 537–543
Cahn R. D., Zwilling E., Kaplan N. O., Levine L. 1962. Nature and Development of Lactic Dehydrogenases: The two major types of this enzyme form molecular hybrids which change in makeup during development. Science, 136(3520): 962–969
Constable S., Favier R., McLane J., Fell R., Chen M., Holloszy J. 1987. Energy metabolism in contracting rat skeletal muscle: adaptation to exercise training. American Journal of Physiology-Cell Physiology, 253(2): C316–C322
Drury D. R., Wick A. N. 1956. Metabolism of lactic acid in the intact rabbit. Am J Physiol, 184(2): 304–308
Fields P. A., Houseman D. E. 2004. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus. Molecular biology and evolution, 21(12): 2246–2255
Fields P. A., Strothers C. M., Mitchell M. A. 2008. Function of muscle-type lactate dehydrogenase and citrate synthase of the Galápagos marine iguana, Amblyrhynchus cristatus, in relation to temperature. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 150(1): 62–73
Gleeson T. T., Harrison J. M. 1986. Reptilian Skeletal Muscle: Fiber-Type Composition and Enzymatic Profile in the Lizard, Iguana iguana. Copeia, 1986(2): 324–332
Gleeson T. T., Harrison J. M. 1988. Muscle composition and its relation to sprint running in the lizard Dipsosaurus dorsalis. American Journal of Physiology 255 (3 Pt 2) :R470
Grau U. M., Trommer W. E., Rossmann M. G. 1981. Structure of the active ternary complex of pig heart lactate dehydrogenase with S-lac-NAD at 2.7 A resolution. Journal of Molecular Biology, 151(2): 289–307
Guex N., Peitsch M. C., Schwede T. J. E. 2009. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. 30(S1): S162–S173
Haney P. J., Badger J. H., Buldak G. L., Reich C. I., Woese C. R., Olsen G. J. 1999. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Prentice-Hall
He J., Xiu M., Tang X., Yue F., Wang N., Yang S., Chen Q. 2013. The Different Mechanisms of Hypoxic Acclimatization and Adaptation in Lizard Phrynocephalus vlangalii Living on Qinghai-Tibet Plateau. Journal of Experimental Zoology Part A, 319(3):117–123
Hochachka P. W. 1988. The lactate paradox: analysis of underlying mechanisms. Ann Sports Med, 4: 184–189
Hochachka P. W., Mommsen T. P. 1983. Protons and anaerobiosis. Science, 219(4591): 1391–1397
Hoff M. L. M., Fabrizius A., Folkow L. P., Burmester T. 2016. An atypical distribution of lactate dehydrogenase isoenzymes in the hooded seal (Cystophora cristata) brain may reflect a biochemical adaptation to diving. Journal of Comparative Physiology B, 186 (3): 1–14
Howald H., Pette D., Simoneau J. A., Uber A., Hoppeler H., Cerretelli P. 1990. Effect of chronic hypoxia on muscle enzyme activities. International Journal of Sports Medicine, 11 (Suppl 1): 10–14
Ji L. L., Stratman F. W., Lardy H. A. 1986. Chronic exercise training alters kinetic properties of rat skeletal muscle and myocardial lactate dehydrogenase. Febs Letters, 208(2): 297–300
Johns G. C., Somero G. N. 2004. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Molecular biology and evolution, 21(2): 314–320
Jr M. A., Hale D. M. 1968. Organ lactic dehydrogenase in altitude-acclimatized rats. Journal of Applied Physiology, 25(6): 725–728
Kaaja R., Are K. 1982. Myocardial LDH isoenzyme patterns in rats exposed to cold and/or hypobaric hypoxia. Acta Medica Scandinavica, 212(S668): 136–142
Kaaja R., Are K. 1996. ACTH and growth hormone in myocardial LDH adaptation to hypoxia in rats. Basic Research in Cardiology, 91(4): 269–274
Kiefer F., Arnold K., Künzli M., Bordoli L., Schwede T. 2008. The SWISS-MODEL Repository and associated resources. Nucleic Acids Research, 37(Database issue): 387–392
Klebe R. J. 1975. A simple method for the quantitation of isozyme patterns. Biochemical genetics, 13(11–12): 805–812
Krieg A. F., Rosenblum L. J., Henry J. B. 1967. Lactate dehydrogenase isoenzymes a comparison of pyruvate-to-lactate and lactate-to-pyruvate assays. Clinical Chemistry, 13(3): 196–203
Li X. T., Wang Y., Lu S. S., Li M., Men S. K., Bai Y. C., Tang X. L., Chen Q. 2017. The Cold Hardiness of Phrynocephalus erythrurus, the Lizard Living at Highest Altitude in the World. Cryoletters, 38(3): 216–227
Liao C. H., Ho W. Z., Huang H. W., Kuo C. H., Lee S. C., Li S. S. L. 2001. Lactate dehydrogenase genes of caiman and Chinese soft-shelled turtle, with emphasis on the molecular phylogenetics and evolution of reptiles. Gene, 279(1): 63–67
Livak K. J., Schmittgen T. D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2? ΔΔCT Method. Methods, 25(4): 402–408
Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951. Protein measurement with the Folin phenol reagent. J biol chem, 193(1): 265–275
Ma L., Yang Y. Z., Ge R. L. 2012. Study on the content of myoglobin and the activity of lactate dehydrogenase and malate dehydrogenase in skeletal muscle of tibetan antelope]. Chinese journal of applied physiology, 28(2): 118–121 (In Chinese)
Mager M., Blatt M. F., Natale P. J., Blatteis C. M. 1968. Effect of high altitude on lactic dehydrogenase isozymes of neonatal and adult rats. American Journal of Physiology, 215(1): 8–13
Mannen H., Tsoi S., Krushkal J. S., Li W. H., Li S. 1997. The cDNA cloning and molecular evolution of reptile and pigeon lactate dehydrogenase isozymes. Molecular biology and evolution, 14(11): 1081–1087
Markert C. L., Shaklee J. B., Whitt G. S. 1975. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science, 189(4197): 102–114
Noakes T. D. 2009. Evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude. Journal of Applied Physiology, 106(2): 737–738
Qi X. Z., Wang X. J., Zhu S. H., Rao X. F., Wei L., Wei D. B. J. A. P. S. 2008. Hypoxic adaptation of the hearts of plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae). Acta Physiologica Sinica 60(3): 348 (In Chinese)
Read J. A., Winter V. J., Eszes C. M., Sessions R. B., Brady R. L. 2001. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins-structure Function & Bioinformatics, 43(2): 175–185
Rees B. B., Bowman J. A., Schulte P. M. 2001. Structure and sequence conservation of a putative hypoxia response element in the lactate dehydrogenase-B gene of Fundulus. Biol Bull, 200(3): 247–251
Ross J. M., ?berg J., Brené S., Coppotelli G., Terzioglu M., Pernold K., Goiny M., Sitnikov R., Kehr J., Trifunovic A. 2010. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proceedings of the National Academy of Sciences, 107(46): 20087–20092
Rossignol F., Solares M., Balanza E., Coudert J., Clottes E. J. J. o. C. B. 2003. Expression of lactate dehydrogenase A and B genes in different tissues of rats adapted to chronic hypobaric hypoxia. Journal of cellular biochemistry, 89(1): 67–79.
Schurr A. 2006. Lactate: The Ultimate Cerebral Oxidative Energy Substrate? Journal of Cerebral Blood Flow & Metabolism, 26(1): 142–52
Scott G. R., Schulte P. M., Egginton S., Scott A. L. M., Richards J. G., Milsom W. K. 2011. Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Molecular biology and evolution, 28(1): 351–363
Seebacher F., Murray S., Else P. 2009. Thermal acclimation and regulation of metabolism in a reptile (Crocodylus porosus): the importance of transcriptional mechanisms and membrane composition. Physiological and Biochemical Zoology, 82(6): 766–775
Selvakumar S., Geraldine P. 2003. Thermal modulation of pyruvate metabolism in the freshwater prawn Macrobrachium malcolmsonii: the role of lactate dehydrogenase. Fish physiology and biochemistry, 29(2): 149–157
Sheafor B. A. 2003. Metabolic enzyme activities across an altitudinal gradient: an examination of pikas (genus Ochotona). The Journal of Experimental Biology, 206(7): 1241–1249
So?anez-Organis J. G., Rodriguez-Armenta M., Leal-Rubio B., Peregrino-Uriarte A. B., Gómez-Jiménez S., Yepiz-Plascencia G. 2012. Alternative splicing generates two lactate dehydrogenase subunits differentially expressed during hypoxia via HIF-1 in the shrimp Litopenaeus vannamei. Biochimie, 94(5): 1250–1260
Stanley W. C., Wisneski J. A., Gertz E. W., Neese R. A., Brooks G. A. 1988. Glucose and lactate interrelations during moderate-intensity exercise in humans. Metabolism Clinical & Experimental, 37(9): 850–858
Storz J. F., Scott G. R., Cheviron Z. A. 2010. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. Journal of Experimental Biology, 213(24): 4125
Tang X., Xin Y., Wang H., Li W., Zhang Y., Liang S., He J., Wang N., Ma M., Chen Q. 2013. Metabolic Characteristics and Response to High Altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a Lizard Dwell at Altitudes Higher Than Any Other Living Lizards in the World. PLOS ONE, 8(8): e71976
Terrados N., Jansson E., Sylven C., Kaijser L. 1990. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? Journal of Applied Physiology, 68(6): 2369–2372
West J. B. 1986. Lactate during exercise at extreme altitude. Federation Proceedings, 45(13): 2953–2957
Xin Y., Tang X., Wang H., Lu S., Wang Y., Zhang Y., Chen Q. 2015. Functional characterization and expression analysis of myoglobin in high-altitude lizard Phrynocephalus erythrurus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 188: 31–36
Xiong Z. J., Storey K. B. 2012. Regulation of liver lactate dehydrogenase by reversible phosphorylation in response to anoxia in a freshwater turtle. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 163(2): 221
Yang J., Wang Z. L., Zhao X. Q., Xu B. H., Ren Y. H., Tian H. F. 2008. Natural selection and adaptive evolution of leptin in the ochotona family driven by the cold environmental stress. PLoS One, 3(1): e1472
Zhang H., Bosch-Marce M., Shimoda L. A., Tan Y. S., Baek J. H., Wesley J. B., Gonzalez F. J., Semenza G. L. 2008. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. Journal of Biological Chemistry, 283(16): 10892–10903
Zhao E., Adler K. 1993. Herpetology of China. Society for the Study of Amphibians and Reptiles


Last Update: 2018-12-26