Li MA,Zhihua LIN,Jianfang GAO,et al.Maternal Thermal Effects on Female Reproduction and Hatchling Phenotype in the Chinese Skink (Plestiodon chinensis)[J].Asian Herpetological Research(AHR),2018,9(4):250-257.[doi:10.16373/j.cnki.ahr.180056]
Click Copy

Maternal Thermal Effects on Female Reproduction and Hatchling Phenotype in the Chinese Skink (Plestiodon chinensis)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2018 VoI.9 No.4
Research Field:
Publishing date:


Maternal Thermal Effects on Female Reproduction and Hatchling Phenotype in the Chinese Skink (Plestiodon chinensis)
Li MA1 Zhihua LIN2 Jianfang GAO3 Hong LI1 Xiang JI1 and Hongliang LU3*
1 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
2 School of Ecology, Lishui University, Lishui 323000, Zhejiang, China
3 Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
Developmental plasticity egg incubation female reproduction hatchling phenotype maternal thermal effect Plestiodon chinensis
We maintained gravid Chinese skinks (Plestiodon chinensis) at three constant temperatures (25, 28 and 31 °C) during gestation, and randomly assigned eggs from each female to one of the same three temperatures for incubation to determine maternal thermal effects on female reproduction and hatchling phenotype. Maternal temperature affected egg-laying date, hatching success and hatchling linear size (snout-vent length, SVL) but not clutch size, egg size, egg component, and embryonic stage at laying. More specifically, females at higher temperatures laid eggs earlier than did those at low temperatures, eggs laid at 31 °C were less likely to hatch than those laid at 25 °C or 28 °C, and hatchlings from eggs laid at 31 °C were smaller in SVL. Our finding that maternal temperature (pre-ovipositional thermal condition) rather than incubation temperature (post-ovipositional thermal condition) affected hatching success indicated that embryos at early stages were more vulnerable to temperature than those at late stages. Our data provide an inference that moderate maternal temperatures enhance reproductive fitness in P. chinensis.


Angilleta M. J. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, New York
Brana F., Ji X. 2007. The selective basis for increased egg retention: early incubation temperature determines hatchling phenotype in wall lizards (Podarcis muralis). Biol J Linn Soc, 92: 441–447
Chamaille-Jammes S., Massot M., Aragon P., Clobert J. 2006. Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Chang Biol, 12: 392–402
Clarke D. N., Zani P. A. 2012. Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards. J Exp Biol, 215: 1117–1127
Du W. G., Lu Y. W., Shen J. Y. 2005. The influence of maternal thermal environments on reproductive traits and hatchling traits in a Lacertid lizard, Takydromus septentrionalis. J Therm Biol, 30: 153–161
Dufaure J. P., Hubert J. 1961. Table de développement du lézard vivipare: Lacerta (Zootoca) vivipara Jacquin. Arch Anat Microsc Morphol Exp, 50: 309–328
Goller M., Goller F., French S. S. 2015. A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecol Evol, 4: 3319–3329
Hu J. R., Du J. Z., Ji X. 2004. Pattern of plasma sex steroid hormone levels during the breeding season of male and female skink: Eumeces chinensis. Acta Biol Exp Sin, 37: 443–448
Ji X., Brana F. 1999. The influence of thermal and hydric environments on incubating eggs and embryonic use of energy and nutrients in the wall lizard Podarcis muralis. Comp Biochem Physiol A, 124: 205213
Ji X., Huang H. Y., Hu X. Z., Du W. G. 2002. Geographic variation in female reproductive characteristics and egg incubation of Eumeces chinensis. Chin J Appl Ecol, 13: 680–684
Ji X., Lin L. H., Luo L. G., Lu H. L., Gao J. F., Han J. 2006. Gestation temperature affects sexual phenotype, morphology, locomotor performance, and growth of neonatal brown forest skinks, Sphenomorphus indicus. Biol J Linn Soc, 88: 453–463
Ji X., Xu Y. G., Zheng X. Z. 1994. The major lipid reserves in the skink, Eumeces chinensis. Zool Res, 15: 59–64
Ji X., Zhang C. H. 2001. Effects of thermal and hydric environments on incubating eggs, hatching success, and hatchling traits in the skink (Eumeces chinensis). Acta Zool Sin, 47: 256–265
Jones S. M., Swain R. 2000. Effects of exogenous FSH on follicular recruitment in a viviparous lizard Niveoscincus metallicus (Scincidae). Comp Biochem Physiol A, 127: 487–493
Lepetz V., Massot M., Schmeller D. S., Clobert J. 2009. Climate warming and the evolution of morphotypes in a reptile. Glob Chang Biol, 15: 454–466
Li H., Zhou Z. S., Wu Y. Q., Lin L. H., Lin C. X. 2012. Maternal thermoregulation during gestation affects the phenotype of hatchling Chinese skinks (Eumeces chinensis): testing the maternal manipulation hypothesis. Acta Ecol Sin, 32: 7255–7263
Lin Z. H., Ji X. 2000. Food habits, sexual dimorphism and female reproduction of the skink (Eumeces chinensis) from a Lishui population in Zhejiang. Acta Ecol Sin, 20: 304–310
Ljungstrom G., Wapstra E., Olsson M. 2015. Sand lizard (Lacerta agilis) phenology in a warming world. BMC Evol Biol, 15: 1–9
Lorioux S., DeNardo D. F., Gorelick R., Lourdais O. 2012. Maternal influences on early development: preferred temperature prior to oviposition hastens embryogenesis and enhances offspring traits in the Children’s python, Antaresia childreni. J Exp Biol, 215: 1346–1353
Lourdais O., Shine R., Bonnet X., Guillon M., Naulleau G. 2004. Climate affects embryonic development in a viviparous snake, Vipera aspis. Oikos, 104: 551–560
Lu H. L., Gao J. F., Ma X. H., Lin Z. H., Ji X. 2012. Tail loss affects fecundity but not offspring traits in the Chinese skink Eumeces chinensis. Curr Zool, 58: 228–235
Lu H. L., Lin Z. H., Li H., Ji X. 2014. Geographic variation in hatchling size in an oviparous skink: effects of maternal investment and incubation thermal environment. Biol J Linn Soc, 113, 283–296
Lu H. L., Wang J., Xu D. D., Dang W. 2018. Maternal warming influences reproductive frequency, but not hatchling phenotypes in a multiple-clutched oviparous lizard. J Therm Biol, 74: 303–310
Lu H. L., Wang Y., Tang W. Q., Du W. G. 2013. Experimental evaluation of reproductive response to climate warming in an oviparous skink. Integr Zool, 8: 175–183
Luo L. G., Ding G. H., Ji X. 2010. Income breeding and temperature-induced plasticity in reproductive traits in lizards. J Exp Biol, 213: 2073–2078
Ma L., Sun B. J., Li S. R., Sha W., Du W. G. 2014. Maternal thermal environment induces plastic responses in the reproductive life history of oviparous lizards. Physiol Biochem Zool, 87: 677–683
Olsson M., Shine R. 1997. The seasonal timing of oviposition in sand lizards (Lacerta agilis): why early clutches are better. J Evol Biol, 10: 369–381
Qu Y. F., Li H., Gao J. F., Ji X. 2011. Geographical variation in reproductive traits and trade‐offs between size and number of eggs in the king ratsnake, Elaphe carinata. Biol J Linn Soc, 104: 701–709
Qu Y. F., Lu H. L., Li H., Ji X. 2014. Incubation temperature fluctuation does not affect incubation length and hatchling phenotype in the Chinese skink Plestiodon chinensis. J Therm Biol, 46: 10–15
Schwanz L. E. 2016. Parental thermal environment alters offspring sex ratio and fitness in an oviparous lizard. J Exp Biol, 219: 2349–2357
Shen W., Pei J. C., Lin L. H., Ji X. 2017. Effects of constant versus fluctuating incubation temperatures on hatching success, incubation length, and hatchling morphology in the Chinese skink (Plestiodon chinensis). Asian Herpetol Res, 8: 262–268
Shine R., Downes S. J. 1999. Can pregnant lizards adjust their offspring phenotypes to environmental conditions? Oecologia, 119: 1–8
Smith C. C., Fretwell S. D. 1974. The optimal balance between size and number of offspring. Am Nat, 108: 499–506
Shine R., Harlow P. 1993. Maternal thermoregulation influences offspring viability in a viviparous lizard. Oecologia, 96: 122–127
Sorci G., Clobert J. 1997. Environmental maternal effects on locomotor performance in the common lizard (Lacerta vivipara). Evol Ecol, 11: 531–541
Starostová Z., Angilletta M. J., Kubicka L., Kratochvíl L. 2012. Thermal dependence of reproductive allocation in a tropical lizard. J Therm Biol, 37: 159–163
Schmidt J. B., Satterlee D. G., Treese S. M. 2009. Maternal corticosterone reduces egg fertility and hatchability and increases the numbers of early dead embryos in eggs laid by quail hens selected for exaggerated adrenocortical stress responsiveness. Poul Sci, 88: 1352–1357
Tang X. L., Yue F., Yan X. F., Zhang D. J., Xin Y., Wang C., Chen Q. 2012. Effects of gestation temperature on offspring sex and maternal reproduction in a viviparous lizard (Eremias multiocellata) living at high altitude. J Therm Biol, 37: 438–444
Telemeco R. S., Radder R. S., Baird T. A., Shine R. 2010. Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biol J Linn Soc, 100: 642–655
Villarreal J. A., Schlegel W. M., Prange H. D. 2007. Thermal environment affects morphological and behavioral development of Rattus norvegicus. Physiol Behav, 91: 26–35
Wang P. C. 1966. Studies on the ecology of four species of lizards in Hangzhou. Acta Zool Sin, 18: 170–185
Wang Z., Lu H. L., Ma L., Ji X. 2014. Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia, 174: 639–649
Wang Z., Ma L., Shao M., Ji X. 2013. Differences in incubation length and hatchling morphology among five species of oviparous Phrynocephalus lizards (Agamidae) from China. Asian Herpetol Res, 4: 225–232
Warner D. A., Lovern M. B., Shine R. 2008. Maternal influences on offspring phenotypes and sex ratios in a multi-clutching lizard with environmental sex determination. Biol J Linn Soc, 95: 256–266
Warner D. A., Shine R. 2007. Fitness of juvenile lizards depends on seasonal timing of hatching, not offspring body size. Oecologia, 154: 65–73
Zhang D. J., Tang X. L., Yue F., Chen Z., Li R. D., Chen Q. 2010. Effect of gestation temperature on sexual and morphological phenotypes of offspring in a viviparous lizard, Eremias multiocellata. J Therm Biol, 35: 129–133


Last Update: 2018-12-26