Tian ZHAO,Bin WANG,Guocheng SHU,et al.Amphibian Species Contribute Similarly to Taxonomic, but not Functional and Phylogenetic Diversity: Inferences from Amphibian Biodiversity on Emei Mountain[J].Asian Herpetological Research(AHR),2018,9(2):110-118.[doi:10.16373/j.cnki.ahr.170079]
Click Copy

Amphibian Species Contribute Similarly to Taxonomic, but not Functional and Phylogenetic Diversity: Inferences from Amphibian Biodiversity on Emei Mountain
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2018 VoI.9 No.2
Page:
110-118
Research Field:
Publishing date:
2018-06-25

Info

Title:
Amphibian Species Contribute Similarly to Taxonomic, but not Functional and Phylogenetic Diversity: Inferences from Amphibian Biodiversity on Emei Mountain
Author(s):
Tian ZHAO* Bin WANG Guocheng SHU Cheng LI and Jianping JIANG*
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
Keywords:
amphibians conservation taxonomic diversity functional diversity phylogenetic diversity
PACS:
-
DOI:
10.16373/j.cnki.ahr.170079
Abstract:
Understanding the relationships between species, communities, and biodiversity are important challenges in conservation ecology. Current biodiversity conservation activities usually focus on species that are rare, endemic, distinctive, or at risk of extinction. However, empirical studies of whether such species contribute more to aspects of biodiversity than common species are still relatively rare. The aim of the present study was to assess the contribution of individual amphibian species to different facets of biodiversity, and to test whether species of conservation interest contribute more to taxonomic, functional, and phylogenetic diversity than do species without special conservation status. To answer these questions, 19 000 simulated random communities with a gradient of species richness were created by shuffling the regional pool of species inhabiting Emei Mountain. Differences of diversity values were then computed before and after removing individual species in these random communities. Our results indicated that although individual species contributed similarly to taxonomic diversity, their contribution to functional and phylogenetic diversity was more idiosyncratic. This was primarily driven by the diverse functional attributes of species and the differences in phylogenetic relationships among species. Additionally, species of conservation interest did not show a significantly higher contribution to any facet of biodiversity. Our results support the claims that the usefulness of metrics based only on species richness is limited. Instead, assemblages that include species with functional and phylogenetic diversity should be protected to maintain biodiversity.

References:

Balvanera P., Pfisterer A. B., Buchmann N., He J. S., Nakashizuka T., Raffaelli D., Schmid B. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett, 9: 1146–1156
Brooks T. M. 2006. Global biodiversity conservation priorities. Science, 313: 58–61
Cadotte M. W., Cavender-Bares J., Tilman D., Oakley T. H. 2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4:e5695
Cardillo M. 2005. Multiple causes of high extinction risk in large mammal species. Science, 309: 1239–1241
Cardinale B. J., Duffy J. E., Gonzalez A., Hooper D. U., Perrings C., Venail P., Narwani A., Mace G. M., Tilman D., Wardle D. A., Kinzig A. P., Daily G. C., Loreau M., Grace J. B., Larigauderie A., Srivastava D. S., Naeem S. 2012. Biodiversity loss and its impact on humanity. Nature, 486: 59–67
Cardinale B. J., Srivastava D. S., Emmett Duffy J, Wright J. P., Downing A. L., Sankaran M., Jouseau C. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443: 989–992
de Carvalho R. A., Tejerina-Garro F. L. 2015. Relationships between taxonomic and functional components of diversity: Implications for conservation of tropical freshwater fishes. Freshw Biol, 60: 1854–1862
Chan H. K., Shoemaker K. T., Karraker N. E. 2014. Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure. Biol Conserv, 170: 3–9
Collins J. P., Crump M. L. 2009. Extinction in our times: global amphibian decline. New York: Oxford University Press.
Devictor V., Mouillot D., Meynard C., Jiguet F., Thuiller W., Mouquet N. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol Lett, 13: 1030–1040
Díaz S., Cabido M. 2001. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol Evol, 16: 646–655
Díaz S., Lavorel S., de Bello F., Quetier F., Grigulis K., Robson T. M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci, 104: 20684–20689
Dodd C. K. 2010. Amphibian ecology and conservation: A handbook of techniques. New York: Oxford University Press
Dunne J. A., Williams R. J., Martinez N. D. 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol Lett, 5: 558–567
Faith D. P. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv, 61: 1–10
Fei L., Hu S., Ye C., Tian W., Jiang J., Wu G., Li J., Wang Y. 2009. Fauna Sinica, Amphibia, Vol.2, Anura. Beijing, China: Science Press (In Chinese)
Fogarty J. H., Vilella F. J. 2001. Evaluating methodologies to survey eleutherodactylus frogs in Montane forests of Puerto Rico. Wildl Soc Bull, 29: 948–955
Funk W. C., Almeida-Reinoso D., Nogales-Sornosa F., Bustamante M. R. 2003. Monitoring population trends of eleutherodactylus frogs. J Herpetol, 37: 245–256
Gering J. C., Crist T. O., Veech J. A. 2003. Additive partitioning of species diversity across multiple spatial scales: Implications for regional conservation of biodiversity. Conserv Biol, 17: 488–499
Graham C. H., Fine P. V. A. 2008. Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecol Lett, 11: 1265–1277
Herbeck L. A., Semlitsch R. D. 2000. Life history and ecology of the southern redback salamander, Plethodon serratus, in Missouri. J Herpetol, 34: 341–347
Hero J. M., Williams S. E., Magnusson W. E. 2005. Ecological traits of declining amphibians in upland areas of eastern Australia. J Zool, 267: 221–232
Hillis D. M., Bull J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol, 42: 182–192
Kier G., Kreft H., Lee T. M., Jetz W., Ibisch P. L., Nowicki C., Mutke J., Barthlott W. 2009. A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci, 106: 9322–9327
Knapp S., Kühn I., Schweiger O., Klotz S. 2008. Challenging urban species diversity: Contrasting phylogenetic patterns across plant functional groups in Germany. Ecol Lett, 11: 1054–1064
Larsen T. H., Williams N. M., Kremen C. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning: Altered community structure disrupts function. Ecol Lett, 8: 538–547
Lee T. M., Jetz W. 2008. Future battlegrounds for conservation under global change. Proc R Soc B Biol Sci, 275: 1261–1270
Lips K. R., Reeve J. D., Witters L. R. 2003. Ecological traits predicting amphibian population declines in central America. Conserv Biol, 17: 1078–1088
Loreau M. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294: 804–808
Mace G. M. 2003. Preserving the tree of life. Science, 300: 1707–1709
Maire E., Grenouillet G, Brosse S, Villéger S. 2015. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces: Assessing functional space quality. Glob Ecol Biogeogr. 24:728–740.
Murray BR, Hose GC. 2005. Life-history and ecological correlates of decline and extinction in the endemic Australian frog fauna. Austral Ecol, 30: 564–571
Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858
Naeem S., Duffy J. E., Zavaleta E. 2012. The functions of biological diversity in an age of extinction. Science, 336: 1401–1406
Naniwadekar R., Vasudevan K. 2006. Patterns in diversity of anurans along an elevational gradient in the Western Ghats, South India: Patterns in diversity of anurans. J Biogeogr, 34: 842–853
Nemenyi P. B. 1963. Distribution-free multiple comparisons. Ph.D. Thesis. Princeton University
Pavoine S., Vallet J., Dufour A. B., Gachet S., Daniel H. 2009. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos, 118: 391–402
Perrings C. A , M?ler K. G., Folke C., Holling C. S., Jansson B. O. 1995. Biodiversity conservation: problems and policies. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Pool T. K., Grenouillet G, Villéger S. 2014. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Divers Distrib, 20: 1235–1244
Posada D., Crandall K. A. 1998. MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14: 817–818
R development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Ronquist F., Huelsenbeck J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574
Rudolf V. H. W., Rasmussen N. L., Dibble C. J., Van Allen B. G. 2014. Resolving the roles of body size and species identity in driving functional diversity. Proc R Soc B Biol Sci, 281: 20133203–20133203
Sodhi N. S., Bickford D., Diesmos A. C., Lee T. M., Koh L. P., Brook B. W., Sekercioglu C. H., Bradshaw C. J. A. 2008. Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS ONE, 3: e1636
Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688–2690
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 30: 2725–2729
Trochet A., Moulherat S., Calvez O., Stevens V., Clobert J., Schmeller D. 2014. A database of life-history traits of European amphibians. Biodivers Data J, 2: e4123
Tsianou M. A., Kallimanis A. S. 2016. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers Conserv, 25: 117–132
Villéger S., Mason N. W. H., Mouillot D. 2008. New multidimensional functional diversity indices for a multifaced framework in functional ecology. Ecology, 89: 2290–2301
Villéger S., Miranda J. R., Hernández D. F., Mouillot D. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl, 20: 1512–1522
Webb C. O., Ackerly D. D., McPeek M. A., Donoghue M. J. 2002. Phylogenies and community ecology. Annu Rev Ecol Syst, 33: 475–505
Williams S. E., Hero J. M. 1998. Rainforest frogs of the Australian Wet Tropics: Guild classification and the ecological similarity of declining species. Proc R Soc B Biol Sci, 265: 597–602
Winter M., Devictor V., Schweiger O. 2013. Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol, 28: 199–204

Memo

Memo:
-
Last Update: 2018-06-26