Kailong ZHANG,Haojie TONG,Yubin WO,et al.Sex Ratio and Sexual Size Dimorphism in a Toad-headed Lizard, Phrynocephalus guinanensis[J].Asian Herpetological Research(AHR),2018,9(1):35-42.[doi:10.16373/j.cnki.ahr.170024]
Click Copy

Sex Ratio and Sexual Size Dimorphism in a Toad-headed Lizard, Phrynocephalus guinanensis
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2018 VoI.9 No.1
Page:
35-42
Research Field:
Publishing date:
2018-03-25

Info

Title:
Sex Ratio and Sexual Size Dimorphism in a Toad-headed Lizard, Phrynocephalus guinanensis
Author(s):
Kailong ZHANG1 Haojie TONG1 Yubin WO1 Naifa LIU2 and Yuanting JIN1*
1 College of Life Sciences, China Jiliang University, Hangzhou 310018, China
2 School of Life Sciences, Lanzhou University, Lanzhou 730000, China
Keywords:
toad-headed lizard mark-recapture sexual size dimorphism growth rate survivorship sex ratio
PACS:
-
DOI:
10.16373/j.cnki.ahr.170024
Abstract:
Phrynocephalus guinanensis has sexual dimorphism in abdominal coloration, but its ontogenetic development of sexual size dimorphism (SSD) is unknown. Using mark-recapture data during four days each year from August from 2014 to 2016, we investigated the development of sex ratios, SSD, sex-specific survivorship and growth rates in a population of P. guinanensis. Our results indicated that the sex ratio of males to females was 1:2.8. Males had a lower survival rate (6%) than females (14%) across the age range from hatchling to adult, which supported the discovered female-biased sex ratio potentially associated with the low survival rate of males between hatchlings and juveniles. Male-biased SSD in tail length and head width existed in adults rather than in hatchling or juvenile lizards. The growth rates in body dimensions were undistinguishable between the sexes during the age from hatchling to juvenile, but the growth rate in head length from juvenile to adult was significantly larger in males than females. Average growth rate of all morphological measurements from hatchling to juvenile were larger compared with corresponding measurements from juvenile to adult, but only being significant in tail length, head width, abdomen length in females and snout-vent length in males. We provided a case study to strengthen our understanding of the important life history traits on how a viviparous lizard population can survive and develop their morphology in cold climates.

References:

Anderson M. 1994. Sexual selection. New Jersey: Princeton University Press
Berry J. F., Shine R. 1980. Sexual size dimorphism and sexual selection in turtles (Order Testudines). Oecologia, 44(2): 185–191
Bonnet X., Shine R., Naulleau G., Vacher-Vallas M. 1998. Sexual dimorphism in snakes: different reproductive roles favour different body plans. P Roy Soc Lond B Biol, 265: 179–183
Brecko J., Huyghe K., Vanhooydonck B., Herrel A., Grbac I., Van-Damme R. 2008. Functional and ecological relevance of intraspecific variation in body size and shape in the lizard Podarcis melisellensis (Lacertidae). Biol J Linn Soc, 94: 251–264
Caswell H. 2001. Matrix population models. Sunderland: Sinauer Associates
Christe P., Keller L., Roulin A. 2006. The predation cost of being a male: implications for sex-specific rates of ageing. Oikos, 114(2): 381–384
Cluttonbrock T. H., Coulson T. N., Milner-Gulland E. J., Thomson D., Armstrong H. M. 2002. Sex differences in emigration and mortality affect optimal management of deer populations. Nature, 415: 633–637
Cooper W. E., Vitt L. J. 1989. Sexual dimorphism of head and body size in an iguanid lizard: paradoxical results. Am Nat, 133(5): 729–735
Cox R. M. 2006. A test of the reproductive cost hypothesis for sexual size dimorphism in Yarrow’s spiny lizard Sceloporus jarrovii. J Anim Ecol, 75: 1361–1369
Cox R. M., Calsbeek R. 2010. Severe costs of reproduction persist in Anolis lizards despite the evolution of single egg clutch. Evolution, 64: 1321–1330
Cox R. M., Stenquist D., Calsbeek R. 2009. Testosterone, growth and the evolution of sexual size dimorphism. J Evol Biol, 22: 1586–1598
Cox R. M., Zilberman V., John-Alder H. B. 2006. Environmental sensitivity of sexual size dimorphism: laboratory common garden removes effects of sex and castration on lizard growth. Funct Ecol, 20: 880–888
Damme R. V., Aerts P., Vanhooydonck B. 1998. Variation in morphology, gait characteristics and speed of locomotion in two populations of lizards. Biol J Linn Soc, 63:409–427
Fox C. W., Roff D. A., Fairbairn D. J. 2001. Evolutionary Ecology: Concepts and Case Studies. New York: Oxford University Press
Galliard J. F. L., Fitze P. S., Ferrière R., Clobert J. 2005. Sex ratio bias, male aggression, and population collapse in lizards. P Natl Acad Sci USA, 102(50): 18231–18236
Haenel G. J., John-Alder H. B. 2002. Experimental and demographic analyses of growth rate and sexual size dimorphism in a lizard, Sceloporus undulatus. Oikos, 96: 70–81
Herrel A., Meyers J. J., Vanhooydonck B. 2001. Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): a population-level analysis. Biol J Linn Soc, 74: 305–314
Herrel A., Moore J. A., Bredeweg E. M., Nelson N. J. 2010. Sexual dimorphism, body size, bite force and male mating success in tuatara. Biol J Linn Soc, 100: 287–292
Ji X., Xie Y. Y., Sun P. Y., Zheng X. Z. 1997. Sexual dimorphism and female reproduction in a viviparous snake, Elaphe rufodorsata. J Herpetol, 31: 420–422
Ji X., Wang Y. Z., Wang Z. 2009. New species of Phrynocephalus (Squamata, Agamidae) from Qinghai, Northwest China. Zootaxa, 1988: 61–68
Jin Y. T., Yang, Z. S., Brown R. P., Liao P. H., Liu N. F. 2014. Intraspecific lineages of the lizard Phrynocephalus putjatia from the Qinghai-Tibetan Plateau: impact of physical events on divergence and discordance between morphology and molecular markers. Mol Phylogen Evol, 71 (2014): 288-297
Jin Y. T., Tong, H. J., Zhang K. L. 2016. The impact of phenotypic characteristics on thermoregulation in a cold-climate agamid lizard, Phrynocephalus guinanensis. Asian Herpetol Res, 7(3): 210-219
Jirotkul M. 1999. Operational sex ratio influences female preference and male-male competition in guppies. Anim Behav, 58: 287–294
John-Alder H. B., Cox R. M., Taylor E. N. 2007. Proximate developmental mediators of sexual dimorphism in size: case studies from squamate reptiles. Integr Comp Biol, 47(2): 258–271
Johnston G. 2011. Growth and survivorship as proximate causes of sexual size dimorphism in peninsula dragon lizards Ctenophorus fionni. Austral Ecol, 36: 117–125
Kaliontzopoulou A., Carretero M. A., Llorente G. A. 2007. Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards. J Morphol, 268: 152–165
Kaliontzopoulou A., Adams D. C., Meijden A. V. D., Perera A., Carretero M. A. 2012. Relationships between head morphology, bite performance and ecology in two species of Podarcis wall lizards. Evol Ecol, 26: 825–845
Kvarnemo C., Ahnesjo I. 1996. The dynamics of operational sex ratios and competition for mates. Trends in Ecol Evol, 11(10): 404–408
Li J. Q., Zhou R., Liu N. F. 2014. Life-history variation among three populations of the toad-headed lizard Phrynocephalus vlangalii along an elevation gradient on the northeastern Tibetan Plateau. Herpetological J, 24(1): 17–23
Losos J. B. 1990. Ecomorphology, performance capability, and scaling of west Indian Anolis lizards: an evolutionary analysis. Ecol Monogr, 60(3): 369–388
Lu H. L., Jiang C. Q., Ji X. 2015. Locomotor costs of pregnancy in a viviparous toad-headed lizard, Phrynocephalus vlangalii (Agamidae). Herpetol J, 25: 149–154
Madsen T., Shine R. 1993. Phenotypic plasticity in body sizes and sexual size dimorphism in European grass snakes. Evolution, 47(1): 321–325
Molinazuluaga C., Doherty P. F., Zú?igavega J. J., Zamoraabrego J. G. 2015. Survivorship, growth, and detection of a knob-scaled lizard in Queretaro, Mexico. J Herpetol, 47(1): 156–161
Owensmith N. 1993. Comparative mortality rates of male and female Kudus: The costs of sexual size dimorphism. J Anim Ecol, 62: 428–440
Parker G. A. 1992. The evolution of sexual dimorphism in fish. J Fish Biol, 41(Supplement B): 1–20
Pearson D., Shine R., Williams A. 2002. Geographic variation in sexual size dimorphism within a single snake species (Morelia spilota, Pythonidae). Oecologia, 131: 418–426
Pettersson L.B., Ramnarine I. W., Becher S. A. 2004. Sex ratio dynamics and fluctuating selection pressures in natural populations of the Trinidadian guppy, Poecilia reticulata. Behav Ecol Sociobiol, 55: 461–468
Pinto A., Wiederhecker H. C., Colli G. R. 2005. Sexual dimorphism in the Neotropical lizard, Tropidurus torquatus (Squamata, Tropiduridae). Amphibia-Reptilia, 26: 127–137
Powell G. L., Russell A. P. 1985. Growth and sexual size dimorphism in Alberta populations of the eastern short-horned lizard, Phrynosoma douglassi brevirostre. Can J Zool, 63: 139–154
Qi Y., Wan H. F., Gu H. J., Wang Y. Z. 2011. Do displays and badges function in establishing the social structure of male toad-headed lizards, Phrynocephalus vlangalii?. J Ethol, 29: 381–387
Qi Y., Yang W. Z., Lu B., Fu J. Z. 2013. Genetic evidence for male-biased dispersal in the Qinghai toad-headed agamid Phrynocephalus vlangalii and its potential link to individual social interactions. Ecol Evol, 3: 1219–1230
Roff D. A. 1992. The evolution of life histories: theory and analysis. New York: Chapman and Hall
Schwarzkopf L., Shine R. 1992. Costs of reproduction in lizards: escape tactics and susceptibility to predation. Behav Ecol Sociobiol, 31: 17–25
Shine R. 1994. Sexual size dimorphism in snakes revisited. Copeia, 1994: 326–346
Stamps J. A. 1993. Sexual size dimorphism in species with asymptotic growth after maturity. Biol J Linn Soc, 50: 123–145
Stearns S. C. 1992. The evolution of life histories. New York: Oxford University Press
Stuart-Fox D. M., Moussalli A., Marshall N. J., Owens I. P. E. 2003. Conspicuous males suffer higher predation risk: Visual modelling and experimental evidence from lizards. Anim Behav, 66: 541–550
Vanhooydonck B., Herrel A., Irschick D. J. 2006. Out on a limb: the differential effect of substrate diameter on acceleration capacity in Anolis lizards. J Exp Biol, 209: 4515–4523
Wang S. G., Zeng Z. Y., Wu P. F., Lan Z. J., Wang Y. Z. 2004. The home range of Phrynocephalus vlangalii. Journal of Sichuan University (Natural Science Editon), 41(2): 403–408 (in Chinese with English abstract)
Wolff J. O., Edge W. D., Wang G. 2002. Effects of adult sex ratios on recruitment of juvenile gray-tailed voles, Microtus canicaudus. J Mammal, 83: 947–956
Wu P. F., Wang Y. Z., Guo H. Y., Wang S. G., Zeng Z. Y., Zeng T., Cai H. X. 2005. The growth and growth differences between female and male of Phrynocephalus vlangalii. J Sichuan Univ (Nat Sci Edition), 42(6): 1252–1257 (in Chinese with English abstract)
Zhang K. L., Liu Y. H., Tong H. J., Yu X. X., Jin Y. T. 2017. Correlation between the spatial distribution of active cave and insect resources in Phrynocephalus guinanensis (Lacertilia: Agamidae). Acta Ecol Sin, 37 (16): 5550–5555 (in Chinese with English abstract)
Zhao W., Liu N. F. 2014. The proximate causes of sexual size dimorphism in Phrynocephalus przewalskii. Plos One, 9(1): 1–9

Memo

Memo:
-
Last Update: 2018-03-27