Lusha LIU,Xungang WANG,Mengjie ZHANG,et al.Molecular Characterization of Thyroid Hormone Receptors (TRs) and their Responsiveness to T3 in Microhyla fissipes[J].Asian Herpetological Research(AHR),2018,9(1):13-23.[doi:10.16373/j.cnki.ahr.170091]
Click Copy

Molecular Characterization of Thyroid Hormone Receptors (TRs) and their Responsiveness to T3 in Microhyla fissipes
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2018 VoI.9 No.1
Research Field:
Publishing date:


Molecular Characterization of Thyroid Hormone Receptors (TRs) and their Responsiveness to T3 in Microhyla fissipes
Lusha LIU1* Xungang WANG12 Mengjie ZHANG3 Jianping JIANG1*
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
Microhyla fissipes thyroid hormone receptors functional characteristic expression pattern responsiveness
To explore and enrich the molecular mechanisms of thyroid hormone receptors (TRs) in the metamorphosis of amphibians, the cDNA sequences of TRα and TRβ in Microhyla fissipes were cloned and characterized. TRα was 1 706 bp in length with an open reading frame (ORF) of 1 257 bp encoding a predicted protein of 418 amino acids and TRβ was 1 422 bp with an ORF of 1 122 bp encoding a predicted protein of 373 amino acids. Their protein sequences contained 4 conserved domains of the nuclear receptor superfamily with two highly conserved cysteine-rich zinc fingers in the DNA-binding domain, whereas TRβ was 42 amino acids shorter in its A/B domain than TRα. Highly-conserved sequences and structures indicated their conserved functions during metamorphosis. TRα expression reached peak at 12 h and then decreased from 12 h to 48 h. While dramatically up-regulated TRβ was observed after exposure of T3 within 24 h, and it was down-regulated from 24 h to 48 h. The expression pattern of TRβ is similar to that in the natural metamorphosis. Furthermore, tadpoles treated 24 h also resembled the climax of metamorphosis tadpoles and TRβ expression had higher responsiveness than TRα to T3 in M. fissipes. These results suggest M. fissipes may serve as the model to assay environmental compounds on TH signaling disruption.


Atkinson B. G., Warkman A. S., Chen Y. 1998. Thyroid hormone induces a reprogramming of gene expression in the liver of premetamorphic Rana catesbeiana tadpoles. Wound Repair Rege, 6: 323–336
Brown D. D., Cai L. 2007. Amphibian metamorphosis. Dev Biol, 306: 20–33
Buchholz D. R., Paul B. D., Fu L., Shi Y. B. 2006. Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocr, 145: 1–19
Chen Q. L., Luo Z., Tan X. Y., Pan Y. X., Zheng J. L., Zou M. 2014. Molecular cloning and mRNA tissue expression of thyroid hormone receptors in yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta. Gene, 536: 232–237
Choi J., Suzuki K. T., Sakuma T., Shewade L., Yamamoto T., Buchholz D. R. 2015. Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis. Endocrinology, 156: 735–744
Choi J., Atsuko I., Daniel R. B. 2017. Growth, development, and intestinal remodeling occurs in the absence of thyroid hormone receptor α in tadpoles of Xenopus tropicalis. Endocrinology, 158: 1623–1633
Du C. C., Li X. Y., Wang H. X., Liang K., Wang H. Y., Zhang Y. H. 2017. Identification of thyroid hormone receptors a and beta genes and their expression profiles during metamorphosis in Rana chensinesis. Turk J Zool, 41: 454–463
Grimaldi A., Buisine N., Miller T., Shi Y. B., Sachs L. M. 2013. Mechanisms of thyroid hormone receptor action during development: Lessons from amphibian studies. BBA-Gen Subjects, 1830: 3882–3892
Kawahara A., Baker B. S., Tata J. R. 1991. Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development, 112: 933–943
Liu L. S., Zhao L. Y., Wang S. H., Jiang J. P. 2016. Research proceedings on amphibian model organisms. Zool Res, 37: 237–245
Lou Q., Zhang Y., Ren D., Xu H., Zhao Y., Qin Z., Wei W. 2014. Molecular characterization and developmental expression patterns of thyroid hormone receptors (TRs) and their responsiveness to TR agonist and antagonist in Rana nigromaculata. J Environ Sci, 26: 2084–2094
Manchado M., Infante C., Rebordinos L., Ca?avate J. P. 2009. Molecular characterization, gene expression and transcriptional regulation of thyroid hormone receptors in Senegalese sole. Gen Comp Endocr, 160: 139–147
Marchand O., Safi R., Escriva H., Van Rompaey E., Prunet P., Laudet V. 2001. Molecular cloning and characterization of thyroid hormone receptors in teleost fish. J Mol Endocrinol, 26: 51–65
Morvan-Dubois G., Demeneix B. A., Sachs L. M. 2008. Xenopus laevis as a model for studying thyroid hormone signalling: From development to metamorphosis. Mol Cell Endocrin, 293: 71–79
Nagy L., Kao H. Y., Love J. D., Li C., Banayo E., Gooch J. T., Krishna V., Chatterjee K., Evans R. M., Schwabe J. W. 1999. Mechanism of corepressor binding and release from nuclear hormone receptors. Gene Dev, 13: 3209–3216
Nakajima K., Ichiro T., Yoshio Y. 2018. Thyroid hormone receptor α-and β-knockout Xenopus tropicalis tadpoles reveal subtype-specific roles during development. Endocrinology, 159: 733–743
Natalia N., Thorsten H. 2004. Nuclear receptors: overview and classification. CurrDrug Targets-Inflamm Allergy, 3: 335–346
Nelson E. R., Habibi H. R. 2009. Thyroid receptor subtypes: Structure and function in fish. Gen Comp Endocr 161: 90–96
Oka T., Mitsui-Watanabe N., Tatarazako N., Onishi Y., Katsu Y., Miyagawa S., Ogino Y., Yatsu R., Kohno S., Takase M., Kawashima Y., Ohta Y., Aoki Y., Guillette L. J., Iguchi T. 2013. Establishment of transactivation assay systems using fish, amphibian, reptilian and human thyroid hormone receptors. J Appl Toxicol, 33: 991–1000
Opitz R., Lutz I., Nguyen N. H., Scanlan T. S., Kloas W. 2006. Analysis of thyroid hormone receptor βA mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action. Toxicol Appl Pharm, 212: 1–13
Shi Y. B. 1999. Amphibian metamorphosis: from morphology to molecular biology. John Wiley, New York
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 30: 2725–2729
Veldhoen N., Propper C. R., Helbing C. C. 2014. Enabling comparative gene expression studies of thyroid hormone action through the development of a flexible real-time quantitative PCR assay for use across multiple anuran indicator and sentinel species. Aquat Toxicol, 148: 162–173
Veldhoen N., Skirrow R. C., Osachoff H., Wigmore H., Clapson D. J., Gunderson M. P., Van Aggelen G., Helbing C. C. 2006. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol, 80: 217–227
Wang S. H., Zhao L. Y., Liu L. S., Yang D. W., Khatiwada J. R., Wang B., Jiang J. P. 2017. A complete embryonic developmental table of Microhyla fissipes (Amphibia, Anura, Microhylidae). Asian Herpetol Res, 8: 108–117
Wang X., Matsuda H., Shi Y. B. 2008. Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology, 149: 5610–5618
Wen L., Shi Y. B. 2015. Unliganded Thyroid hormone receptor α controls developmental timing in Xenopus tropicalis. Endocrinology, 156: 721–734
Wen L., Shibata Y., Su D., Fu L., Luu N., Shi Y. B. 2017. Thyroid hormone receptor α controls developmental timing and regulates the rate and coordination of tissue-specific metamorphosis in Xenopus tropicalis. Endocrinology 158: 1985–1998
Wu W., Niles E. G., LoVerde P. T. 2007. Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni. BMC Evol Biol, 7: 150
Yaoita Y., Brown D. D. 1990. A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Gene Dev, 4: 1917–1924
Yaoita Y., Shi Y. B., Brown D. D. 1990. Xenopus laevis alpha and beta thyroid hormone receptors. PNAS, 87: 8684
Zhao L. Y., Liu L. S., Wang S. H., Wang H. Y., Jiang J. P. 2016. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis. Sci Rep, 6: 27310


Last Update: 2018-03-27