Xiaowei SONG,Jinghan SONG,Honghong SONG,et al.A Robust Noninvasive Approach to Study Gut Microbiota Structure of Amphibian Tadpoles by Feces[J].Asian Herpetological Research(AHR),2018,9(1):1-12.[doi:10.16373/j.cnki.ahr.170062]
Click Copy

A Robust Noninvasive Approach to Study Gut Microbiota Structure of Amphibian Tadpoles by Feces
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2018 VoI.9 No.1
Page:
1-12
Research Field:
Publishing date:
2018-03-25

Info

Title:
A Robust Noninvasive Approach to Study Gut Microbiota Structure of Amphibian Tadpoles by Feces
Author(s):
Xiaowei SONG12* Jinghan SONG1 Honghong SONG1 Qi ZENG1 and Keke SHI1
1 College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
2 Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
Keywords:
Bufo gargarizans DNA extraction intestinal microflora Phenol-chloroform 16S rDNA
PACS:
-
DOI:
10.16373/j.cnki.ahr.170062
Abstract:
The 16S rDNA amplicon high-throughput sequencing technique provides a robust and inexpensive approach to detect the gut microbiota of amphibians. Since different experimental protocols generate technical biases in drawing the gut microbiota profiles, the integrative analysis of gut microbiota produced by different studies must be performed with circumspection. In this study, we compared the efficacy of two DNA extraction methods (i.e., a phenol-chloroform method and TIANamp Stool DNA Kit) in describing intestinal and fecal bacterial communities of transplanted Asiatic toad (Bufo gargarizans) tadpoles. In terms of the DNA extraction quality (i.e., DNA purity and yield rate) and the consistency in between fecal and intestinal microbiota structures (i.e., α and β diversity indices), the phenol-chloroform method was more robust than this commercial stool kit in profiling gut microbiota of tadpoles with feces.

References:

Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., Fernandes G.R., Tap J., Bruls T., Batto J.M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H. B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E. G., Wang J., Guarner F., Pedersen O., de Vos W. M., Brunak S., Dore J., Antolin M., Artiguenave F., Blottiere H. M., Almeida M., Brechot C., Cara C., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Foerstner K. U., Friss C., van de Guchte M., Guedon E., Haimet F., Huber W., van Hylckama-Vlieg J., Jamet A., Juste C., Kaci G., Knol J., Lakhdari O., Layec S., Le Roux K., Maguin E., Merieux A., Melo Minardi R., M’Rini C., Muller J., Oozeer R., Parkhill J., Renault P., Rescigno M., Sanchez N., Sunagawa S., Torrejon A., Turner K., Vandemeulebrouck G., Varela E., Winogradsky Y., Zeller G., Weissenbach J., Ehrlich S. D., Bork P. 2011. Enterotypes of the human gut microbiome. Nature, 473: 174-180
Ausubel F. M. 2002. Short protocols in molecular biology: Wiley
Bahl M. I., Bergstrom A., Licht T. R. 2012. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol Lett, 329: 193-197
Blekhman R., Tang K., Archie E. A., Barreiro L. B., Johnson Z. P., Wilson M. E., Kohn J., Yuan M. L., Gesquiere L., Grieneisen L. E., Tung J. 2016. Common methods for fecal sample storage in field studies yield consistent signatures of individual identity in microbiome sequencing data. Sci Rep, 6: 31519
Bletz M. C., Goedbloed D. J., Sanchez E., Reinhardt T., Tebbe C. C. 2016. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun, 7: 13699
Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30: 2114-2120
Brooks A. W., Kohl K. D., Brucker R. M., van Opstal E. J., Bordenstein S. R. 2016. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol, 14: e2000225
Choo J. M., Leong L. E., Rogers G. B. 2015. Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep, 5: 16350
Claassen S., du Toit E., Kaba M., Moodley C., Zar H. J., Nicol M. P. 2013. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods, 94: 103-110
Colombo B. M., Scalvenzi T., Benlamara S., Pollet N. 2015. Microbiota and mucosal immunity in amphibians. Front Immunol, 6: 111
Dabrowska K., Witkiewicz W. 2016. Correlations of Host Genetics and Gut Microbiome Composition. Front Microbiol, 7: 1357
Davenport E. R. 2016. Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes, 7: 178-184
Dethlefsen L., Huse S., Sogin M. L., Relman D. A. 2008. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol, 6: e280
Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005. Diversity of the human intestinal microbial flora. Science, 308: 1635-1638
Edgar R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 10: 996-998
Ferrand J., Patron K., Legrand-Frossi C., Frippiat J. P., Merlin C., Alauzet C., Lozniewski A. 2014. Comparison of seven methods for extraction of bacterial DNA from fecal and cecal samples of mice. J Microbiol Methods, 105: 180-185
Fouhy F., Deane J., Rea M. C., O’Sullivan O., Ross R. P., O’Callaghan G., Plant B. J., Stanton C. 2015. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS One, 10: e0119355
Gu S., Chen D., Zhang J.N., Lv X., Wang K., Duan L. P., Nie Y., Wu X. L. 2013. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One, 8: e74957
Guo F., Zhang T. 2013. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl Microbiol Biotechnol, 97: 4607-4616
Hammer ?., Harper D. A., Ryan P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 1-9
Hof C., Araujo M. B., Jetz W., Rahbek C. 2011. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480: 516?519
Jiménez R. R., Sommer S. 2017. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers Conserv, 26: 763-786
Jin Y., Wu S., Zeng Z., Fu Z. 2017. Effects of environmental pollutants on gut microbiota. Environ Pollut, 222: 1-9
Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glockner F.O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res, 41: e1
Kohl K. D., Cary T. L., Karasov W. H., Dearing M. D. 2013. Restructuring of the amphibian gut microbiota through metamorphosis. Environ Microbiol Rep, 5: 899-903
Kohl K. D., Amaya J., Passement C. A., Dearing M. D., McCue M. D. 2014. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol, 90: 883-894
Larsen A. M., Mohammed H. H., Arias C. R. 2015. Comparison of DNA extraction protocols for the analysis of gut microbiota in fishes. FEMS Microbiol Lett, 362
Ley R. E., Lozupone C.A., Hamady M., Knight R., Gordon J. I. 2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol, 6: 776-788
Li H., Qu J., Li T., Yao M., Li J., Li X. 2017a. Gut microbiota may predict host divergence time during Glires evolution. FEMS Microbiol Ecol, 93: fix009-fix009
Li T., Long M., Li H., Gatesoupe F. J., Zhang X., Zhang Q., Feng D., Li A. 2017b. Multi-omics analysis reveals a correlation between the host phylogeny, gut microbiota and metabolite profiles in cyprinid fishes. Front Microbiol, 8
Lozupone C. A., Stombaugh J., Gonzalez A., Ackermann G., Wendel D., Vazquez-Baeza Y., Jansson J. K., Gordon J. I., Knight R. 2013. Meta-analyses of studies of the human microbiota. Genome Res, 23: 1704-1714
Mashoof S., Goodroe A., Du C. C., Eubanks J. O., Jacobs N., Steiner J. M., Tizard I., Suchodolski J. S., Criscitiello M. F. 2013. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunol, 6: 358-368
Maukonen J., Simoes C., Saarela M. 2012. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol, 79: 697-708
McFall-Ngai M., Hadfield M. G., Bosch T. C., Carey H. V., Domazet-Loso T., Douglas A. E., Dubilier N., Eberl G., Fukami T., Gilbert S. F., Hentschel U., King N., Kjelleberg S., Knoll A. H., Kremer N., Mazmanian S. K., Metcalf J. L., Nealson K., Pierce N. E., Rawls J. F., Reid A., Ruby E. G., Rumpho M., Sanders J. G., Tautz D., Wernegreen J. J. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A, 110: 3229-3236
Nava G. M., Friedrichsen H. J., Stappenbeck T. S. 2011. Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J, 5: 627-638
Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science, 336: 1262-1267
Salonen A., Nikkila J., Jalanka-Tuovinen J., Immonen O., Rajilic-Stojanovic M., Kekkonen R. A., Palva A., de Vos W. M. 2010. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods, 81: 127-134
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., Robinson C. J., Sahl J. W., Stres B., Thallinger G. G., Van Horn D. J., Weber C. F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 75: 7537-7541
Shapira M. 2016. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol, 31: 539-549
Song S.J., Amir A., Metcalf J. L., Amato K. R., Xu Z. Z., Humphrey G., Knight R. 2016. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems, 1
Su C., Lei L., Duan Y., Zhang K.Q., Yang J. 2012. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol, 93: 993-1003
Vences M., Lyra M. L., Kueneman J. G., Bletz M. C., Archer H. M., Canitz J., Handreck S., Randrianiaina R. D., Struck U., Bhuju S., Jarek M., Geffers R., McKenzie V. J., Tebbe C. C., Haddad C. F., Glos J. 2016. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Naturwissenschaften, 103: 25
Voreades N., Kozil A., Weir T. L. 2014. Diet and the development of the human intestinal microbiome. Front Microbiol, 5: 494
Wagner Mackenzie B., Waite D. W., Taylor M. W. 2015. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Microbiol, 6: 130
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 73: 5261-5267
Weng F. C., Yang Y. J., Wang D. 2016. Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation. BMC Genomics, 17: 1024
Weng F. C. H., Shaw G. T. W., Weng C. Y., Yang Y. J., Wang D. 2017. Inferring microbial interactions in the gut of the Hong Kong whipping frog (Polypedates megacephalus) and a validation using probiotics. Front Microbiol, 8
Wesolowska-Andersen A., Bahl M. I., Carvalho V., Kristiansen K., Sicheritz-Ponten T., Gupta R., Licht T. R. 2014. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome, 2: 19
Yamagishi J., Sato Y., Shinozaki N., Ye B., Tsuboi A., Nagasaki M., Yamashita R. 2016. Comparison of boiling and robotics automation method in DNA extraction for metagenomic sequencing of human oral microbes. PLoS One, 11: e0154389
Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., Magris M., Hidalgo G., Baldassano R. N., Anokhin A. P., Heath A. C., Warner B., Reeder J., Kuczynski J., Caporaso J. G., Lozupone C. A., Lauber C., Clemente J. C., Knights D., Knight R., Gordon J. I. 2012. Human gut microbiome viewed across age and geography. Nature, 486: 222-227
Yuan S., Cohen D. B., Ravel J., Abdo Z., Forney L. J. 2012. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One, 7: e33865

Memo

Memo:
-
Last Update: 2018-03-27