Huaiqing DENG,Chen CHEN,Ning XIAO and Jiang ZHOU.Prokaryotic Expression of Antimicrobial Peptide CATH PR1–2 from the Skin of Paa robertingeri in Escherichia coli[J].Asian Herpetological Research(AHR),2017,8(4):275-283.[doi:10.16373/j.cnki.ahr.160016]
Click Copy

Prokaryotic Expression of Antimicrobial Peptide CATH PR1–2 from the Skin of Paa robertingeri in Escherichia coli
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2017 VoI.8 No.4
Page:
275-283
Research Field:
Publishing date:
2017-12-25

Info

Title:
Prokaryotic Expression of Antimicrobial Peptide CATH PR1–2 from the Skin of Paa robertingeri in Escherichia coli
Author(s):
Huaiqing DENG# Chen CHEN# Ning XIAO* and Jiang ZHOU*
College of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, China
Keywords:
E. coli BL21 fusion expression Paa robertingeri recombinant protein PR
PACS:
-
DOI:
10.16373/j.cnki.ahr.160016
Abstract:
The aim of this study was to investigate the prokaryotic expression of antimicrobial peptide cathelicidin (CATH) PR1 and PR2 from the skin of Paa robertingeri in Escherichia coli. Two active peptides, CATH PR1 and CATH PR2, belong to the CATH family in the skin of P. robertingeri. CATH PR1 has a relatively high antimicrobial activity, especially for the drug-resistant strains found in clinical practice; however, no antimicrobial activity has been found in CATH PR2. The molecular weights of both CATH PR1 and CATH PR2 are relatively low (3195.88 and 2838.34 Da, respectively). Thus, the genetic processes, as well as the expression and purification of these proteins, are difficult to perform. Therefore, in this study, CATH PR1 and CATH PR2 genes were tandem ligated and then connected to the plasmid pET-32a. This reconstructed plasmid was then transfected into the expression vector E. coli BL21 to construct the recombinant expression system. The fusion expression of peptide PR was stable in E. coli after induction with 1.0 mol/L isopropyl β-D-1-thiogalactopyranoside at 37°C for 4 h. The antimicrobial activity assay using Staphylococcus aureus (Song) and Candida albicans 08030102 showed that the antimicrobial activity of PR was similar to the antimicrobial activity of CATH PR1. This study showed that artificial modification of the amino acid sequences of PR1 and PR2 could result in better protein expression in prokaryotes, and the fusion protein expressed had relatively high antimicrobial and other biological activities. In conclusion, the findings suggest future prospects of the commercialization of this method.

References:

Brandenburg L. O., Merres J., Albrecht L. J., Varoga D., Pufe T. 2012. Antimicrobial peptides: Multifunctional drugs for different applications. Polymers, 4: 539–560
Brand G. D., Santos R. C., Arake L. M., Silva V. G., Veras L. C., Costa V., Costa C. H., Kuckelhaus S. S., Alexandre J. G., Feio M. J., Roberto J., Leite S. A. 2013. The skin secretion of the amphibian Phyllomedus anordestina: a source of antimicrobial and antiprotozoal peptides. Molecules (Basel, Switzerland), 18: 7058–7070
Brown K. L., Poon G. F. T., Birkenhead D., Pena O. M., Falsafi R., Dahlgren C., Karlsson A., Bylund J., Hancock R. E. W., Johnson P. 2011. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol, 186: 5497–5505
Conlon J. M., Mechkarska M. 2014. Host-defense peptides with therapeutic potential from skin secretions of frogs from the Family Pipidae. Pharmaceuticals, 7: 58–77
Dombrowski Y., Peric M., Koglin S., Kammerbauer C., G?ss C., Anz D., Simanski M., Gl?ser R., Harder J., Hornung V., Gallo R. L., Ruzicka T., Besch R., Schauber J. 2011. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med, 3: 82–38
Feng F., Chen C., Zhu W., He W., Guang H., Li Z., Wang D., Liu J., Chen M., Wang Y., Yu H. 2011. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc-CATHs, from Coturnixcoturnix. FEBS J, 278: 1573–1584
Hu Y., Hu T.H., Lin S., Su J., Shi G., Li W., Zhao X., Qu X. 1999. The site-directed mutagenesis and expressing of Cecropin B Gene. Pharm Biotechnol, 6: 193–197
Jorge A., Silva M., Diamond G. 2014. Antimicrobial peptides from fish. Pharmaceuticals (Basel, Switzerland), 7: 265–310
Kosciuczuk E. M., Lisowski P., Jarczak J., Strza?kowska N., Jozwik A., Horbanczuk J., Krzyzewski J., Zwierzchowski L., Bagnicka E. 2012. Cathelicidins family of antimicrobial peptide, A review. Mol Biol Rep, 39: 10957–10970
Ling G. Y., Li L., Gao J. X., Yu H. N., Wang Y. P., Zhou J. 2013. Geographically distinct expression profile of host defense peptides in the skin of the Chinese Odorous Frog Odorrana margaretae. Asian Herpetol Res, 4: 288–297
Li Y., Li X., Wang G. 2006. Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Express Purific, 47: 489–505
Li Y. 2009. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem, 54: 1–9
Li J., Zhang J., Zhang Z., Kang C. T., Zhang S. Q. 2010. SUMO mediating fusion expression of antimicrobial peptide CM4 from two joined genes in Escherichia coli. Curr Microbiol, 62: 296–300
Li J. F., Zhang J., Zhang Z., Ma H., Zhang J., Zhang S. Q. 2010. Production of bioactive human beta-defensin-4 in Escherichia coli using SUMO fusion partner. Protein J, 29: 314–319
Luan C., Zhang H. W., Song D. G., Xie Y. G., Feng J., Wang Y. Z. 2014. Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology. Appl Microbiol Biotechnol, 98: 3651–3658
Ma P. 2010. Prokaryotic expression and purification of human beta-defensin-9. Nanjing: Nanjing Agricultural University
Ma Q., Yu Z., Han B., Zhang R. 2011. Research progress in fusion expression of antimicrobial peptides. Chin J Biotechnol, 27: 1408–1416
Malakhov M. P., Mattern M. R., Malakhova O. A., Drinker M., Weeks S. D., Butt T. R. 2004. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics, 5: 75–86
Saemann M. D., Horl W. H., Weichhart T. 2007. Uncovering host defences in the urinary tract: cathelicidin and beyond. Nephrol Dial Transplant, 22: 347–349
Wang G., Mishra B., Lau K., Lushnikova T., Golla R., Wang X. 2015. Antimicrobial peptide in 2014. Pharmaceuticals (Basel, Switzerland), 8: 123–150
Wuerth K., Hancock R. E. W. 2011. New insights into cathelicidin modulation of adaptive immunity. Europ J Immunol, 41: 2817–2819
Yin M. G. 2015. Structure and biological function analysis of cathelicidins from Paa robertingeri. Guiyang: Guizhou Normal University
Yi T., Huang Y., Chen Y. 2014. Prokaryotic expression and antimicrobial mechanism of XPF-St7-derived a-helical peptides. J Pept Sci, 21: 46–52
Zhang H., Niu H., Li G., Lu J. 2010. The influence of molecular structure on antimicrobial peptides’ activity. Chin J Antibiot, 12: 892–897
Zhang X. 2014. The prokaryotic expression, purification and function research of the fusion polypeptide hEGF-AWRK6. Shenyang: Liaoning University
Zhang X., Jin L., Wang Z., Wang Q. 2014. Fusion expression of antimicrobial peptides in Escherichia coli. Chin J Biotechnol, 30: 1172–1181

Memo

Memo:
-
Last Update: 2017-12-25