Yuanting JIN,Haojie TONG and Kailong ZHANG.The Impact of Phenotypic Characteristics on Thermoregulation in a Cold-Climate Agamid lizard, Phrynocephalus guinanensis[J].Asian Herpetological Research(AHR),2016,7(3):210-219.[doi:10.16373/j.cnki.ahr.160002]
Click Copy

The Impact of Phenotypic Characteristics on Thermoregulation in a Cold-Climate Agamid lizard, Phrynocephalus guinanensis
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2016 VoI.7 No.3
Research Field:
Publishing date:


The Impact of Phenotypic Characteristics on Thermoregulation in a Cold-Climate Agamid lizard, Phrynocephalus guinanensis
Yuanting JIN* Haojie TONG and Kailong ZHANG
College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, China
Phrynocephalus thermal regulation abdominal black-speckled area thermal imaging
Physiological and metabolic processes of ectotherms are markedly influenced by ambient temperature. Previous studies have shown that the abdominal black-speckled area becomes larger with increased elevation in plateau Phrynocephalus, however, no studies have verified the hypothesis that this variation is correlated with the lizard’s thermoregulation. In this study, infrared thermal imaging technology was first used to study the skin temperature variation of torsos, heads, limbs and tails of a cold-climate agamid lizard, Phrynocephalus guinanensis. The heating rates of the central abdominal black-speckled skin area and peripheral non-black-speckled skin area under solar radiation were compared. Our results showed that the heating rates of limbs and tails were relatively faster than the torsos, as heating time was extended, rates gradually slowed before stabilizing under solar radiation. Under the environment without solar radiation, the cooling rates of limbs and tails were also relatively faster than the torsos of lizards, the rates slowed down and finally became stable as the cooling time was extended. We also found that the heating rate of the abdominal black-speckled skin area was faster than the nearby non-black-speckled skin area. These results increased our insights into the functional significance of these phenotypic traits and help explain their covariation with the thermal environment in these cold-climate agamid lizards.


Allen J. 1877. The influence of physical conditions in the genesis of species. Radical Review, 1: 108–140
Avery R. 1982. Field studies of body temperatures and thermoregulation. In: Gans C, Pough FH, eds. Biology of the Reptilia. London: Academic Press, 93–166
Bartlett P., Gates D. 1967. The energy budget of a lizard on a treet runk. Ecology, 48: 315-322
Capula M., Luiselli L. 1994. Reproductive strategies in alpine adders, Vipera berus: the black females bear more often. Acta Oecologica, 15: 207-214
Caro T. I. M. 2005. The Adaptive Significance of Coloration in Mammals. BioScience, 55(2): 125–136
Cooper J. M., Allen J. A. 1994. Selection by wild birds on artificial dimorphic prey on varied backgrounds. Biol J Linn Soc, 51(4): 433–446
Corbalan, V., Debandi, G. 2013. Basking behaviour in two sympatric herbivorous lizards (Liolaemidae: Phymaturus) from the Payunia volcanic region of Argentina, J Nat Hist, 47(19-20): 955–964.
Cott H. B. 1940. Adaptive Coloration in Animals. London: Methuen & Co.
Du W. G., Yan S. J., Ji X. 2000. Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. J Therm Biol, 25(3): 197–202
Forsman A. 1995. Opposing fitness consequences of colour pattern in male and female snakes. J Evolution Biol, 8: 53–70
Gates D. 1980. Biophysical Ecology. New York: Springer
Geen M. R. S., Johnston G. R. 2014. Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard, Tiliqua scincoides. J Therm Biol, 43: 54–60
Gibson A. R., Falls B. 1979. Thermal biology of the common garter snake Thamnophis sirtalis (L.). Oecologia, 43(1): 99–109
Guo X., Wang Y. 2007. Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a re-evaluation. Mol Phylogenet Evol, 45(2): 643–662
Huey R. B., Kingsolver J. G. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol, 4(5): 131–135
Ji X., Du W. G., Sun P. Y. 1996. Body temperature, thermal tolerance and influence of temperature on sprint speed and food assimilation in adult northern grass lizards, Takydromus septentrionalis. J Therm Biol, 21: 155–161
Ji X., Wang Y. Z., Wang Z. 2009. New species of Phrynocephalus (Squamata, Agamidae) from Qinghai, Northwest China. Zootaxa, (1988): 61–68
Jin Y. T. 2008. Evolutionary studies of Phrynocephalus (Agamidae) on the Qinghai-Xizang (Tibetan) Plateau. Ph.D. Thesis. Lanzhou: Lanzhou University (in Chinese with English abstract)
Jin Y. T., Brown R. P. 2013. Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 68(2): 259–268
Jin Y. T., Brown R. P., Liu N. F. 2008. Cladogenesis and phylogeography of the lizard Phrynocephalus vlangalii (Agamidae) on the Tibetan plateau. Mol Ecol, 17(8): 1971–1982
Jin Y. T., Liao P. H. 2015. An elevational trend of body size variation in a cold-climate agamid lizard, Phrynocephalus theobaldi. Curr Zool, 61(3): 444–453
Jin Y. T., Liu N. F. 2007. Altitudinal variation in reproductive strategy of the toad-headed lizard, Phrynocephalus vlangalii in North Tibet Plateau (Qinghai). Amphibia-Reptilia, 28(4): 509–515
Jin Y. T., Liu N. F. 2010. Phylogeography of Phrynocephalus erythrurus from the Qiangtang Plateau of the Tibetan Plateau. Mol Phylogenet Evol, 54(3): 933–940
Jin Y. T., Liu N. F., Li J. L. 2007. Elevational variation in body size of Phrynocephalus vlangalii in North Tibet plateau. Belg J Zool, 137: 197–202
Jin Y. T., Tian R. R., Liu N. F. 2006. Altitudinal variations of morphological characters of Phrynocephalus sand lizards :on the validity of Bergmann’ s and Allen’ s rules. Acta Zoologica Sinica, 52: 838–845 (in Chinese with English abstract)
Jin Y. T., Yang Z. S., Brown R. P., Liao P. H., Liu N. F. 2014. Intraspecific lineages of the lizard Phrynocephalus putjatia from the Qinghai-Tibetan Plateau: Impact of physical events on divergence and discordance between morphology and molecular markers. Mol Phylogenet Evol, 71: 288–297
Johnsson I. J., Ka¨llman-Eriksson K. 2008. Cryptic Prey Colouration Increases Search Time in Brown Trout (Salmo trutta): Effects of Learning and Body Size. Behav Ecol Sociobiol, 62(10): 1613–1620
Jong P., Gussekloo S., Brakefield P. 1996. Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J Exp Biol, 199(12): 2655–2666
Kettlewell B. 1973. The evolution of melanism. Oxford: Clarendon Press
Kettlewell H. B. 1955. Recognition of appropriate backgrounds by the pale and black phases of Lepidoptera. Nature, 175(4465): 943–944
Khan J. J., Richardson J. M. L., Tattersall G. J. 2010. Thermoregulation and aggregation in neonatal bearded dragons (Pogona vitticeps). Physiol Behav, 100(2): 180–186
Kingsolver J. G. 1987. Evolution and coadaptation of thermoregulatory behavior and wing pigmentation pattern in pierid butterflies. Evolution, 41(3): 472–490
Lillywhite H. 1987. Temperature, energetics, and physiologicalecology. In: Seigel RA, Collins JT, Novak SS eds. Snakes: Ecology and Evolutionary Biology. NewYork: MacMillian, 422–477
Norris K. S. 1967. Color adaptation in desert reptiles and its thermal relationships. Lizard Ecology: A Symposium ed. W.W. Milstead. Columbia: University of Missouri Press, 162–199
Pearson O. P. 1977. The effect of substrate and skin color on thermoregulation of a lizard. Biochem Physiol A, 58: 353–358
Porter W. P., Gates D. M. 1969. Thermodynamic equilibria of animals with environment. Ecol Monogr, 39(3): 227–244
Rice G. E., Bradshaw S. D. 1980. Changes in dermal reflectance and vascularity and their effects on thermoregulation in Amphibolurus nuchalis (Reptilia:Agamidae). J Comp Physiol B: Biochem Syst Environ Physiol, 135: 139–146
Tang X. L., Xin Y., Wang H. H., Li W. X., Zhang Y., Liang S. W., He J. Z., Wang N. B., Ma M., Chen Q. 2013. Metabolic Characteristics and Response to High Altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a Lizard Dwell at Altitudes Higher Than Any Other Living Lizards in the World. Plos One, 8(8): e71976
Umbers K. D. L., Herberstein M. E., Madin J. S. 2013. Colour in insect thermoregulation: Empirical and theoretical tests in the colour-changing grasshopper, Kosciuscola tristis. J Insect Physiol, 59(1): 81–90
Walton B. M., Bennett A. F. 1993. Temperature-Dependent Color Change in Kenyan Chameleons. Physiol Zool, 66(2): 270–287
Watt W. B. 1968. Adaptive Significance of Pigment Polymorphisms in Colias Butterflies. I. Variation of Melanin Pigment in Relation to Thermoregulation. Evolution, 22(3): 437–458
Yang W., Qi Y., Fu J. 2014. Exploring the genetic basis of adaptation to high elevations in reptiles: a comparative transcriptome analysis of two toad-headed agamas (genus Phrynocephalus). PLoS One, 9(11): e112218
Yang Y., Wang L., Han J., Tang X., Ma M., Wang K., Zhang X., Ren Q., Chen Q., Qiu Q. 2015. Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus, the highest altitude Lizard living in the Qinghai-Tibet Plateau. BMC Evol Biol, 15: 101
Zhao E. M., Jiang Y. M., Huang Q. Y., Hu S. Q., Fei L., Ye C. Y. 1998. Latin-Chinese-English Names of Amphibians and Reptiles. Beijing: Sciences Press (in Chinese)
Zhao K. T. 1999. Phrynocephalus kaup. In: Zhao, E.M., Zhao, K.T., Zhou, K.Y. (Eds.), Fauna Sinica, Reptilia, vol. 2. Beijing: Science Press, 153–193 (in Chinese)


Last Update: 2016-09-25