Danna YU,Rongquan ZHENG,Qinfang LU,et al.Genetic Diversity and Population Structure for the Conservation of Giant Spiny Frog (Quasipaa spinosa) Using Microsatellite Loci and Mitochondrial DNA[J].Asian Herpetological Research(AHR),2016,7(2):75-86.[doi:10.16373/j.cnki.ahr.150040]
Click Copy

Genetic Diversity and Population Structure for the Conservation of Giant Spiny Frog (Quasipaa spinosa) Using Microsatellite Loci and Mitochondrial DNA
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2016 VoI.7 No.2
Research Field:
Publishing date:


Genetic Diversity and Population Structure for the Conservation of Giant Spiny Frog (Quasipaa spinosa) Using Microsatellite Loci and Mitochondrial DNA
Danna YU1 Rongquan ZHENG12* Qinfang LU1 Guang YANG23 Yao FU1 and Yun ZHANG1
1 Institute of Ecology, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
2 Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Jinhua, Zhejiang 321004, China
3 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China
sexual selection acoustic communication male-male competition phonotaxis tests coevolution
The giant spiny frog (Quasipaa spinosa) is an endangered species with a relatively small distribution limited to southern China and Northern Vietnam. This species is becoming increasingly threatened because of over-exploitation and habitat degradation. This study provides data on the genetic diversity and population genetic structure of the giant spiny frog to facilitate the further development of effective conservation recommendations for this economically important but threatened species. We examined 10 species-specific microsatellite loci and Cyt b genes (562 bp) collected from 13 wild populations across the entire range of this species. Results of 10 microsatellite loci analysis showed a generally high level of genetic diversity. Moreover, the genetic differentiation among all 12 populations was moderate to large (overall FST = 0.1057). A total of 51 haplotypes were identified for Cyt b, which suggests high haplotype nucleotide diversities. Phylogeographic and population structure analyses using both DNA markers suggested that the wild giant spiny frog can be divided into four distinct major clades, i.e., Northern Vietnam, Western China, Central China, and Eastern China. The clades with significant genetic divergence are reproductively isolated, as evidenced by a high number of private alleles and strong incidence of failed amplification in microsatellite loci. Our research, coupled with other studies, suggests that Q. spinosa might be a species complex within which no detectable morphological variation has been revealed. The four phylogenetic clades and some subclades with distinct geographical distribution should be regarded as independent management units for conservation purposes.


Andersen L. W., Fog K., Damgaard C. 2004. Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc R Soc Lond B Biol Sci, 271: 1293–1302
Barber P. 1999. Phylogeography of the canyon treefrog, Hyla arenicolor (Cope) based on mitochondrial DNA sequence data. Mol Ecol, 8: 547–562
Bickford D., Lohman D. J., Sodhi N. S., Ng P. K., Meier R., Winker K., Ingram K. K., Das I. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol Evol, 22: 148–155
Borrell Y. J., Alvarez J., Blanco G., de Murguía A. M., Lee D., Fernández C., Martínez C., Cotano U., ?lvarez P., Prado J. A. S. 2011. A parentage study using microsatellite loci in a pilot project for aquaculture of the European anchovy Engraulis encrasicolus L. Aquaculture, 310: 305–311
Bossuyt F., Milinkovitch M. C. 2000. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc Natl Acad Sci, 97: 6585–6590
Botstein D., White R. L., Skolnick M., Davis R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 32: 314–331
Bradley S. H., Fellers G. M., Randal V. S., Oliver J. C., Pauly G. B. 2004. Species boundaries, phylogeography and conservation genetics of the red-legged frog (Rana aurora/draytonii) complex. Mol Ecol, 13: 2667–2677
Burns E. L., Eldridge M. D., Houlden B. A. 2004. Microsatellite variation and population structure in a declining Australian Hylid Litoria aurea. Mol Ecol, 13: 1745–1757
Chan H. K., Shoemaker K. T., Karraker N. E. 2014. Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure. Biol Conserv, 170: 3–9
Che J., Hu J. S., Zhou W. W., Murphy R. W., Papenfuss T. J., Chen M. Y., Rao D. Q., Li P. P., Zhang Y. P. 2009. Phylogeny of the Asian spiny frog tribe Paini (Family Dicroglossidae) sensu Dubois. Mol Phyl Evol, 50: 59–73
Du J., Yan J., Zhou K. 2012. Isolation of microsatellite markers for Pelophylax nigromaculata and a tentative application in detecting interspecific introgression. Gene, 508: 130–134
Dupuis J. R., Roe A. D., Sperling F. A. 2012. Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol Ecol, 21: 4422–4436
Elmer K. R., Dávila J. A., Lougheed S. C. 2007. Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni. BMC Evol Biol, 7: 247
Evanno G., Regnaut S., Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 14: 2611–2620
Ficetola G.F., De Bernardi F. 2005. Supplementation or in situ conservation? Evidence of local adaptation in the Italian agile frog Rana latastei and consequences for the management of populations. Anim Conserv, 8: 33–40
Ficetola G. F., Garner T., De Bernardi F. 2007. Genetic diversity, but not hatching success, is jointly affected by postglacial colonization and isolation in the threatened frog, Rana latastei. Mol Ecol, 16: 1787–1797
Francesca Z., Roberta C., Giuseppe N. 2006. Genetic relationships of the western Mediterranean painted frogs based on allozymes and mitochondrial markers: evolutionary and taxonomic inferences (Amphibia, Anura, Discoglossidae). Biol J Linn Soc, 87: 515–536
Frost D. R., Grant T., Faivovich J., Bain R. H., Haas A., Haddad C. F. B., De Sá R. O., Channing A., Wilkinson M., Donnellan S. C., Raxworthy C. J., Campbell J. A., Blotto B. L., Moler P., Drewes R. C., Nussbaum R. A., Lynch J. D., Green D. M., Wheeler W. C. 2006. The amphibian tree of life. Bull Am Mus Nat Hist, 297: 1–370.
Funk W. C., Caminer M., Ron S. R. 2012. High levels of cryptic species diversity uncovered in Amazonian frogs. Proc R Soc B, 279: 1806–1814
Goldstein P., Wyner Y., Doukakis P., Egan M. G., Amato G., Rosenbaum H., DeSalle R. 2005. Theory and methods for diagnosing species and populations in conservation. Ann Miss Bot Gard, 92: 12–27
Guo S. W., Thompson E. A. 1992. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics, 48: 361–372
Huelsenbeck J. P., Ronquist F. 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755
Lau M. W. N., Geng B., Gu H., van Dijk P. P., Bain R. 2004. Quasipaa spinosa, in: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.1. www.iucnredlist.org
Lewis P. O., Zaykin D. 2000. Genetic Data Analysis: computer program for the analysis of allelic data. Version 1.0 (d15). Available at http://hydrodictyon. eeb.uconn.edu/people/plewis/software.php
Liang Z., Xu Q., Jiang Y., Qin J., Deng W. 2013. Situation and development of Quasipaa spinosa in Yongfu County. Guangxi Anim. Husbandry Veterinary Med, 29: 244–246 (in Chinese)
Liu Z. Q., Wang Y. Q., Su B. 2005. The mitochondrial genome organization of the rice frog, Fejervarya limnocharis (Amphibia: Anura): a new gene order in the vertebrate mtDNA. Gene, 346: 145–151
Marshall T. C., Slate J., Kruuk L. E. B., Pemberton J. M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol, 7: 639–655
Mayden R. L., Wood R. M. 1995. Systematics species concepts and the evolutionarily significant unit in biodiversity and conservation biology. Am Fisheries Soc Symp, 17: 58–113
Miller P. A., Fitch A. J., Gardner M., Hutson K. S., Mair G. 2011. Genetic population structure of Yellowtail Kingfish (Seriola lalandi) in temperate Australasian waters inferred from microsatellite markers and mitochondrial DNA. Aquaculture, 319: 328–336
Moritz C. 1994. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol, 3: 401–411
Musammilu K., Abdul-Muneer P., Gopalakrishnan A., Basheer V., Gupta H., Mohindra V., Lal K. K., Ponniah A. 2014. Identification and characterization of microsatellite markers for the population genetic structure in endemic red-tailed barb, Gonoproktopterus curmuca. Mol Boil Rep, 41: 3051–3062
Newman R. A., Squire T. 2001. Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol, 10: 1087–1100
Palo J. U., Schmeller D. S., Laurila A., Primmer C. R., Kuzmin S. L., Meril? J. 2004. High degree of population subdivision in a widespread amphibian. Mol Ecol, 13: 2631–2644
Posada D., Crandall K. A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818
Pritchard J. K., Stephens M., Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959
Qu Y., Zhang R., Quan Q., Song G., Li S. H., Lei F. 2012. Incomplete lineage sorting or secondary admixture: disentangling historical divergence from recent gene flow in the Vinous-throated parrotbill (Paradoxornis webbianus). Mol Ecol, 21:6117–6133
Rousset F., Raymond M. 1995. Testing heterozygote excess and deficiency. Genetics, 140: 1413–1419
Rozas J., Sánchez-DelBarrio J. C., Messeguer X., Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 2496–2497
Sambrook J., Fritsh E. F., Maniatis T. 1989. Molecular Cloning: a Laboratory Manual, second edition. New York, England: Cold Spring Harbor Laboratory Press
Schneider S., Roessli D., Excoffier L. 2000. Arlequin Ver. 2.001: a Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland
Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol, 18: 233–234
Simon C., Frati F., Beckenbach A., Crespi B., Liu H., Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am, 87: 651–701
Sites Jr J. W., Marshall J. C. 2004. Operational criteria for delimiting species. Ann Rev Ecol Syst, 35: 199–227
Stuart B. L., Inger R. F., Voris H. K., 2006. High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol Lett, 2: 470–474
Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306: 1783–1786
Swofford D. L. 2002. PAUP*: phylogenetic analysis using parsimony, Version 4. Sinauer Associates, Sunderland, Massachusetts
Tallmon D. A., Luikart G., Waples R. S. 2004. The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol, 19: 489–496
Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24: 1596–1599
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Boil Evol, 28: 2731–2739
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc Acid Res, 25: 4876–4882
Wahlund S. 1928. Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas, 11: 65–106
Weir B. S., Cockerham C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358–1370
Wright S. 1978. Evolution and the genetics of populations. Chicago, America: University of Chicago Press
Xie F., Lau M. W. N., Stuart S. N., Chanson J. S., Cox N. A., Fischman D. L. 2007. Conservation needs of amphibians in China: A review. Sci China C, 50: 265–276
Yang D. S., Kenagy G. J. 2009. Nuclear and mitochondrial DNA reveal contrasting evolutionary processes in populations of deer mice (Peromyscus maniculatus). Mol Ecol, 18: 5115–5125
Yang Y. H., Zhang D. X., Li Y. M., Ji Y. J. 2004. Mitochondrial DNA diversity and preliminary biogeography inference of the evolutionary history of the black-spotted pond frog Rana nigromaculata populations in China. Acta Zool Sin, 50: 193–201
Ye C., Fei L., Hu S. 1993. Rare and economic amphibians of China. Chengdu, China: Sichuan Publishing House of Science and Technology (in Chinese)
Ye S. P., Huang H., Zheng R. Q., Zhang J. Y., Yang G., Xu S. X. 2013. Phylogeographic Analyses Strongly Suggest Cryptic Speciation in the Giant Spiny Frog (Dicroglossidae: Paa spinosa) and Interspecies Hybridization in Paa. PloS one, 8:e70403
You E. M., Chiu T. S., Liu K. F., Tassanakajon A., Klinbunga S., Triwitayakorn K., de La Pe?a L. D., Li Y., Yu H. T. 2008. Microsatellite and mitochondrial haplotype diversity reveals population differentiation in the tiger shrimp (Penaeus monodon) in the Indo-Pacific region. Anim Genet, 39: 267–277
Yu B. G., Zheng R. Q., Zhang Y., Liu C. T. 2010. Geographic variation in body size and sexual size dimorphism in the giant-spiny frog Paa spinosa (David, 1875) (Anura: Ranoidae). J Nat Hist, 44: 1729–1741
Yu D. N., Zhang J. Y., Peng L., Shao C., Zheng R.Q. 2015. Do cryptic species exist in Hoplobatrachus rugulosus? An examination using four nuclear genes, the Cyt b Gene and the complete mt genome. PLoS One 10: e0124825
Zhao E. M. 1998. China Red Data Book of Endangered Animals- Amphibia. Beijing, China: Science Press (in Chinese).
Zheng R. Q., Ye R. H., Yu Y. Y., Yang G. 2009. Fifteen polymorphic microsatellite markers for the giant spiny frog, Paa spinosa. Mol Ecol Resour, 9: 336–338
Zhou J., Wu Q., Wang Z., Ye Y. 2004. Genetic variation analysis within and among six varieties of common carp (Cyprinus carpio L.) in China using microsatellite markers. Russ J Genet (Genet), 40: 1144–1148


Last Update: 2016-06-25