Qiong ZHANG,Xingzhi HAN,et al.The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations[J].Asian Herpetological Research(AHR),2016,7(1):21-27.[doi:10.16373/j.cnki.ahr.150056]
Click Copy

The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2016 VoI.7 No.1
Research Field:
Publishing date:


The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations
Qiong ZHANG1* Xingzhi HAN2 Robert H. S. KRAUS34 Le YANG5 Liqing FAN6 Yinzi YE7 and Yi TAO1
1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 College of Life Sciences, Harbin Normal University, Harbin 150025, Heilongjiang, China
3 Department of Biology, University of Konstanz, 78457 Konstanz, Germany
4 Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, Radolfzell 78315, Germany
5 Tibet Plateau Institute of Biology, Beijing West Street 19, Tibet 850001, China
6 College of Agricultural and Animal Husbandry, Tibet University, Tibet 860000, China
7 College of Life Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
local adaptation ectotherms de-adaptation plasticity Qinghai-Tibetan plateau amphibians
For species that have a broad geographic distribution, adaptive variation may be attributable to gene expression plasticity. Nanorana parkeri is an anuran endemic to the southern Tibetan Plateau where it has an extensive altitudinal range (2850 to 5100 m asl). Low oxygen concentration is one of the main environmental characteristics of the Tibetan Plateau. Hypoxia-inducible factor α subunits (HIF-1α and HIF-2α, encoded by Endothelial PAS domain protein 1 (EPAS1)) and associated genes (e.g., vascular endothelial growth factor (VEGF) and Erythropoietin (EPO)) play crucial roles in maintaining oxygen homeostasis. In this study, we compared the expression of HIF-1A, VEGF, EPAS1 and EPO mRNA between two populations of N. parkeri: one population inhabiting the native high altitudes, and the second living in, and being acclimated to, the lower plains (70 m asl). The expression of HIF-1A, VEGF and EPAS1 mRNA in the high altitude population were significantly higher than in the acclimated population, whereas there was no significant difference for EPO between two groups. Our results indicated that gene expression plasticity may make significant contributions to local adaptation of species that have broad altitudinal distributions. In addition, we deepen our understanding of the adaptive potential of this species by evaluating the experiments in the scope of its evolutionary history.


Agrawal A. A. 2001. Phenotypic plasticity in the interactions and evolution of species. Science, 294:321–326
Ahmad Y., Sharma N. K., Garg I., Ahmad M. F., Sharma M., Bhargava K. 2013. An Insight into the Changes in human plasma proteome on adaptation to hypobaric hypoxia. PLoS ONE, 8: e67548. DOI: 10.1371/journal.pone.0067548
Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W. 2011. GenBank. Nucleic Acids Res, 39: D32–D37
Bigham A., Bauchet M., Pinto D., Mao X., Akey J. M., Mei R., Scherer S. W., Julian C. G., Wilson M. J., López Herráez D., Brutsaert T., Parra E. J., Moore L. G., Shriver M. D. 2010. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet, 6: e1001116. DOI: 10.1371/journal.pgen.1001116
Che J., Zhou W. W., Hu J. S., Yan F., Papenfuss T. J., Wake D. B., Zhang Y. P. 2010. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad Sci U S A, 107: 13765–13770
Cheviron Z. A., Bachman G. C., Connaty A., Mcclelland G. B., Storz J. F. 2012. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proc. Natl. Acad. Sci. USA, 109: 8635–8640
Cheviron Z. A., Connaty A. D., McClelland G. B., Storz J. F. 2013. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution, 68-1: 48–62
Cheviron Z. A., Whitehead A., Brumfield R. T. 2008. Transcriptomic variation and plasticity in Rufous-collared Sparrows (Zonotrichia capensis) along an elevation gradient. Mol Ecol,17: 4556–4569
Dewitt T. J., Sih A., Wilson D. S. 1998. Cost and limits of phenotypic plasticity. Trends Ecol Evol, 13:77–81
Espinoza J. R., Alvarez G., Le?n-Velarde F., Preciado H. F. J., Macarlupu J., Rivera-Ch M., Rodriguez J., Favier J., Gimenez-Roqueplo A., Richalet J. 2014. Vascular Endothelial Growth Factor-A is associated with chronic mountain sickness in the Andean population. High Alt Med Biol, 15:146–154
Forsythe J. A., Jiang B. H., Iyer N. V., Agani F., Leung S. W., Koos R. D., Semenza G. L. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 16: 4604–4613
Gao Y. Q. 2005. High altitude military medicine. Chongqing: Chongqing Publishing House. P.237-238
Harrison T. M., Copeland P., Kidd W. S. F., Yin A. 1992. Raising Tibet. Science, 255: 1663–1670
Johansson F., Veldhoen N., Lind M., Helbing C. C. 2013. Phenotypic plasticity in the hepatic transcriptome of European common frog (Rana temporaria): the interplay between environmental induction and geographical lineage on developmental response. Mol Ecol, 22: 5608–5623
Kapitsinou P. P., Liu Q., Unger T. L. 2010. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood, 116: 3039–3048
Li H., Guo S., Ren Y., Wang D., Yu H., Li W., Zhao X., Chang Z. 2013. VEGF189 expression is highly related to adaptation of the plateau pika (Ochotona curzoniae) inhabiting high altitudes. High Alt Med Biol, 14: 395–404
Li H., Ren Y., Guo S., Cheng L., Wang D., Yang J., Chang Z., Zhao X. 2009. The protein level of hypoxia-inducible factor-1α is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J Exp Zool, 311A: 134–141
Li L. 2014. Three factors impacting the hibernation of bullfrog. Brainman of Farmhouse, 2: 22 (in chinese)
Livak K. J., Schmittgen T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 25:402–408 Doi: 10.1006/meth.2001.1262.
Molnar P., England P., Martiod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon development. Rev Geophys, 34: 357–396
Nor J.E., Christensen J., Mooney D. J., Polverini P. J. 1999. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol, 154: 375–384
Robach P., Fulla Y., Westerterp K. R., Richalet J. P. 2004. Comparative response of EPO and soluble transferring receptor at high altitude. Med Sci Sports Exerc, 36: 1493–1498
Simonson T. S., McClain D. A., Jorde L. B., Prchal J. T. 2012. Genetic determinants of Tibetan high-altitude adaptation. Hum Genet, 131: 527–533
Snell-Rood E. C. 2012. Selective processes in development: implications for the costs and benefits of phenotypic plasticity. Integr Comp Biol, 52: 31–42
Stewart E. R., Reese S. A., Ultsh G. R. 2004. The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana). Physio Biochem Zool, 77: 65–73
Sun Y. B., Xiong Z. J., Xiang X. Y., Liu S. P., Zhou W. W., Tu X. L., Zhong L., Wang L., Wu D. D., Zhang B. L., Zhu C. L., Yang M. M., Chen H. M., Li F., Zhou L., Feng S. H., Huang C., Zhang G. J., Irwin D., Hillis D. M., Murphy R. W., Yang H. M., Che J., Wang J., Zhang Y. P. 2014. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA, 112: E1257–E1262
Wenger R. H., Gassmann M. 1997. Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem, 378: 609–616
William G. K., Peter J. R. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell, 30: 393–402
Yi X., Liang Y., Sanchez E. H., Jin X., Cuo Z. X. P., Pool J. E., Xu X., Jiang H., Vinckenbosch N., Korneliussen T. S., Zheng H., Liu T., He W., Li K., Luo R., Nie X., Wu H., Zhao M., Cao H., Zou J., Shan Y., Li S., Yang Q., Asan Ni P., Tian G., Xu J., Liu X., Jiang T., Wu R., Zhou G., Tang M., Qin J., Wang T., Feng S., Li G., Huasang Luosang J., Wang W., Chen F., Wang Y., Zheng X., Li Z., Bianba Z., Yang G., Wang X., Tang S., Gao G., Chen Y., Luo Z., Gusang L., Cao Z., Zhang Q., Ouyang W., Ren X., Liang H., Zheng H., Huang Y., Li J., Bolund L., Kristiansen K., Li Y., Zhang Y., Zhang X., Li R., Li S., Yang H., Nielsen R., Wang J. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329: 75–78
Zhao T. B., Ning H. X., Zhu S. S., Sun P., Xu S. X., Chang Z. J., Zhao X. Q. 2004. Cloning of hypoxia-inducible factor 1α cDNA from a high hypoxia tolerant mammal-plateau pika (Ochotona curzoniae). Biochem Biophys Res Commun, 316: 565–572
Zhang Y. B., Wang Y., Liu X. L., Fen G. H., Zhao D. Y. 1996. People and high altitude. Xining: Qinghai People’s Publishing House. P. 297–319
Zhisheng A., Kutzbach J. E., Prell W. L., Porter S. C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62–66
Zhou Q., Yang S., Luo Y., Qi Y., Yan Z., Shi Z., Fan Y. 2012. A Randomly-controlled study on the cardiac function at the early stage of return to the plains after short-term exposure to high altitude. PLoS ONE, 7: e31097. DOI: 10.1371/journal.pone.0031097


Last Update: 2016-03-30