Yu DU,Longhui LIN,Yuntao YAO,et al.Body Size and Reproductive Tactics in Varanid lizards[J].Asian Herpetological Research(AHR),2014,5(4):263-270.[doi:10.3724/SP.J.1245.2014.00263]
Click Copy

Body Size and Reproductive Tactics in Varanid lizards
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2014 VoI.5 No.4
Research Field:
Original Article
Publishing date:


Body Size and Reproductive Tactics in Varanid lizards
Yu DU12 Longhui LIN1* Yuntao YAO1 Chixian LIN2 and Xiang JI3
1 Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
2 Hainan Key Laboratory for Herpetology, School of Life Sciences, Qiongzhou University, Sanya 572022, Hainan, China
3 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China
body size female reproduction monitor lizard Varanidae
Body size and female reproduction in the water monitor lizard (Varanus salvator) were studied. Forty-two adult females larger than 500 mm SVL and 32 adult males larger than 400 mm SVL were donated by local people in Ledong, Hainan under permit to our laboratory in Hainan in 2013 and 2014. The largest male and female measured 745 and 755 mm SVL, respectively. The mean SVL was greater in adult females than in adult males. Males had larger heads (head width) than females of the same SVL. The smallest reproductive female in our sample was 565 mm SVL. Females produced a single clutch of 17.1 (10?23) pliable-shelled eggs per breeding season stretching from mid-June and mid-September. Clutch size and clutch mass were all positively related to female SVL. However, there was no significant linear relationship between egg mass and female SVL. Larger females generally produced more eggs, and thus heavier clutches than did smaller ones. There was no significant linear relationship between relative clutch mass and female SVL. Phylogenetic generalized least squares (PGLS) analysis, accounting for phylogenetic relationships, showed that clutch size was positively correlated with mean maternal SVL in varanid lizards. PGLS analysis showed that phylogenetic relationships did not affect clutch (or/and egg) mass and the SVL although there were significant linear relationship between clutch (or/and egg) mass and mean maternal SVL. Therefore, we could draw some general conclusions about the body size and reproductive tactics in varanid lizards that larger females generally produced more eggs, larger eggs and thus heavier clutches than did smaller ones.


Andrews H. V., Gaulke M. 1990. Observations on the reproductive biology and growth of the water monitor (Varanus salvator) at the Madras Crocodile Bank. Hamadryad, 15: 1–5
Anonymous. 1978. Varanus salvator breeding at Madras Snake Park. Hamadryad, 3: 4
Arida E., B?hme W. 2010. The origin of Varanus: When fossils, morphology, and molecules alone are never enough. Biawak, 4: 117–124
Barros F. C., Herrel A., Kohlsdorf T. 2011. Head shape evolution in Gymnophthalmidae: Does habitat use constrain the evolution of cranial design in fossorial lizards? J Evol Biol, 24: 2423–2433
Biswas S., Kar S. 1981. Some observations on nesting habits and biology of Varanus salvator (Laurenti) of Bhitarkanika Sanctuary, Orissa. Rec Zool Surv India, 73: 95–109
Felsenstein J. 1985. Phylogenies and the comparative method. Am Nat, 125: 1–15
Gaikhorst G., McLaughlin J., Larkin B., McPharlin M. 2010. Successful captive breeding of Mitchell’s Water Monitor, Varanus mitchelli (Mertens 1958), at Perth Zoo. Zoo Biol, 29: 615–625
Garland Jr. T., Ives A. R. 2000. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat, 155: 346–364
Ji X., Du W. G. 2000. Sexual dimorphism in body size and head size and female reproduction in a viviparous skink Sphenomorphus indicus. Zool Res, 21: 349–354
Ji X., Wang P. C., Hong W. X. 1991. The reproductive ecology of the gecko Gekko japonicus. Acta Zool Sinica, 37: 185–192
Jin Y. T., Li J. Q., Liu N. F. 2003. Elevation-related variation in life history traits among Phrynocephalus lineages on the Tibetan Plateau: do they follow typical squamate ecogrographic patterns? J Zool, 290: 293–301
King D., Green B. 1999. Monitors: The biology of varanid lizards. Krieger Malabar Fla
Kratzer H. 1973. Beobachtungen über die Zeitigungsdauer eines Eigeleges von Varanus salvator. Salamandra, 9: 27–33
Maddison W. P., Maddison D. R. 2011. Mesquite: A modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org
Martins E., Garland T. 1991. Phylogenetic analyses of the correlated evolution of continuous characters: A simulation study. Evolution, 45: 534–557
Martins E. P., Hansen T. F. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat, 149
Meer Mohr J. C. 1930. Over eieren van Varanus salvator en van Python curtus. Trop Nat, 19: 156–157
Mendyk R. W. 2011. Reproduction of Varanid Lizards (Reptilia: Squamata: Varanidae) at the Bronx Zoo. Zoo Biol, 30: 1?16
Mertens R. 1942. Die familie der warane (Varanidae). Abb Senck Naturf Ges, 462, 465, 466: 1–391
Moharana S., Pati S. 1983. Het eierleggen van Varanus salvator in het Nandan Kanan Zoological Park in India. Lacrta, 41: 67–68
Orme D., Freckleton R., Thomas G., Petzoldt T., Fritz S., Isaac N. 2012. Comparative analyses of phylogenetics and evolution in R. R package version 0.5. http://CRANR-projectorg/package=caper
Pianka E. R. 1994. Comparative ecology of Varanus in the Great Victoria desert. Aust J Ecol, 19: 395–408
Pianka E. R. 1995. Evolution of body size: Varanid lizards as a model system. Am Nat, 146: 398?414
Pianka E. R., King D. R., King R. A. 2004. Varanoid Lizards of the World. Bloomington: Indiana University Press
Purvis A., Rambaut A. 1995. Comparative analysis by independent contrasts (CAIC): An apple macintosh application for analysing comparative data. Comput Appl Biosci, 11: 247–251
Pyron R., Burbrink F., Wiens J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol, 13: 93
R Development Core Team 2013. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, http://www.R-project.org
Rohlf F. 2001. Comparative methods for the analysis of continuous variables: Geometric interpretations. Evolution, 55: 2143–2160
Schmidt K. P. 1927. The reptiles of Haian. B Am Mus Nat Hist, 54: 395–465
Shine R., Ambariyanto, Harlow P. S., Mumpuni. 1998. Ecological traits of commercially harvested water monitors, Varanus salvator, in northern Sumatra. Wildlife Res, 25: 437–447
Shine R., Harlow P., Keogh J. S., Boeadi. 1996. Commercial harvesting of giant lizards: The biology of water monitors Varanus salvator in Southern Sumatra. Biol Conserv, 77: 125–134
Smith M. A. 1932. Some notes on monitors. J Bombay Nat Hist Soc, 35: 615–619
Thompson G. G., Pianka E. R. 1999. Reproductive ecology of the black-headed goanna Varanus tristis (Squamata: Varanidae). J R Soc W Austr, 62: 27–31
Thompson G. G., Pianka E. R. 2001. Allometry of clutch and neonate sizes in monitor lizards (Varanidae: Varanus). Copeia, 2001: 443–458
Vogel P. 1979. Innerartliche Auseinandersetzungen bei freilebenden Bindenwaranen (Varanus salvator). Salamandra, 15: 65–83
Warne R.W., Charnov E.L. 2008. Reproductive allometry and the size-number trade-off for lizards. Am Nat, 172: E80–E98
Warton D., Duursma R., Falster D., Taskinen S. 2012. (Standardised) Major Axis Estimation and Testing Routines R package version 3.2.6. http://web.maths.unsw.edu.au/~dwarton
Xu Z. Q., Yuan Y. H., Chen Z. B., Zheng W., Chen J., Wu W. C., Shen Y. X. 2010. Some reproductive characteristics of Varanus bengalensis in captivity. Sichuan J Zool, 29: 70?72
Zhang X.D., Ji X., Luo L.G., Gao J.F., Zhang L. 2005. Sexual dimorphism and female reproduction in the Qinghai toad-headed lizard Phrynocephalus vlangalii. Acta Zool Sin, 51: 1006?1012
Li Y., Ke Z., Wang S., Smith G. R., Liu X. 2011a. An exotic species is the favorite prey of a native enemy. PLoS ONE, 6(9): e24299. doi:10.1371/ journal.pone.0024299
Li Y., Zhunwei K. E., Wang Y., Blaackburn T. M. 2011b. Frog community responses to recent American Bullfrog invasions. Curr Zool, 57: 83–92
Lima S. L. 2002. Putting predators back into behavioral predator-prey interactions. Trends Ecol Evol, 17: 70–75
Llewelyn J., Schwarzkopf L., Phillips B. L., Shine R. 2013. After the crash: How do predators adjust following invasion of a novel toxic prey type? Austral Ecol, doi:10.1111/aec.12058
Lowe S., Browne M., Boudjelas S., De Poorter M. 2000. 100 of the world’s worst invasive alien species a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN)
Mittelbach G. G., Osenberg C. W., Wainwright P. C. 1999. Variation in feeding morphology between pumpkinseed populations: phenotypic plasticity or evolution? Evol Ecol Res, 1: 111–128
Mushinsky H. R., Lotz K. H. 1980. Chemoreceptive responses of two sympatric water snakes to extracts of commonly ingested prey species. J Chem Ecol, 6: 523–535
Nuismer S. L., Thompson J. N. 2006. Coevolutionary alternation in antagonistic interactions. Evolution, 60: 2207–2217
Oh H. S., Hong C. 2007. Current conditions of habitat for Rana catesbeianus and Trachemys scripta elegans imported to Jeju-do, including proposed management plans. Korean J Env Eco, 21: 311–317 (In Korean)
Phillips B. L., Shine R. 2004. Adapting to an invasive species: Toxic cane toads induce morphological change in Australian snakes. Proc Natl Acad Sci USA, 101: 17150–17155
Phillips B. L., Shine R. 2006. An invasive species induces rapid adaptive change in a native predator: Cane toads and Black snakes in Australia. P R Soc B, 273: 1545–1550
Pothoven S. A., Madenjian C. P. 2008. Changes in consumption by alewives and lake Whitefish after Dreissenid mussel invasion in lakes Michigan and Huron. N Am J Fish Manag, 28: 308–320
Preacher K. J. 2001. Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence [Computer software]. Retrieved from http://quantpsy.org.
Preacher K. J., Briggs N. E. 2001. Calculation for Fisher’s exact test: An interactive calculation tool for Fisher’s exact probability test for 2 × 2 tables [Computer software]. Retrieved from http://quantpsy.org
Ra N. Y., Park D., Cheong S., Kim N. S., Sung H. C. 2010. Habitat associations of the endangered Gold-spotted pond frog (Rana chosenica). Zool Sci, 27: 396–401
Saviola A. J., Lamoreaux W. E., Opferman R., Chiszar D. 2011. Chemosensory response of the threatened Eastern indigo snake (Drymarchon couperi) to chemical and visual stimuli of Mus musculus. Herpetol Conserv Biol, 6: 449–454
Strayer D. L. 2012. Eight questions about invasions and ecosystem functioning. Ecol Lett, 15: 1199–1210
Strauss S. Y., Lau J. A., Carroll S. P. 2006. Evolutionary responses of natives to introduced species: What do introductions tell us about natural communities? Ecol Lett, 9: 357–374
Suarez A. V., Case T. J. 2002. Bottom-up effects on persistence of a specialist predator: Ant invasions and Horned lizards. Ecol Appl, 12: 291–298
Suh J. H. 2005. Natural resource survey in Taean coastal national park: Herpetofauna. Seoul: Korea National Park Research Institute (In Korean)
Sung H. C., Kim S. K., Cheong S. W., Park S. R., Roh D. C., Baek K. W., LeeJ. H., Park D. 2006.Estimating detection probabilities and site occupancy rates of three anuran species using call surveys in Haenam Gun. Korean J Ecol Field Biol, 29: 331–335
Taean. 2013. Taean statistical yearbook. Taean County, Chungnam Province, South Korea; Taean County (In Korean)
Vellend M., Harmon L. J., Lockwood J. L., Mayfield M. M., Hughes A. R., Wares J. P., Sax D. F. 2007. Effects of exotic species on evolutionary diversification. Trends Ecol Evol, 22: 481–488
Wang Y. P., Guo Z. W., Pearl C. A., Li Y. M. 2007. Body size affects the predatory interactions between introduced American Bullfrogs Rana catesbeianus and native anurans in China: An experimental study. J Herpetol, 41: 514–520
Wanger T. C., Wielgoss A. C., Motzke I., Clough Y., Brook B. W., Sodhi N. S., Tschamtke T. 2011. Endemic predators, invasive prey and native diversity. P R Soc B, 278: doi: 10.1098/rspb.2010.1512
Wu Z., Li Y., Wang Y., Adams M. J. 2005. Diet of introduced Bullfrogs Rana catesbeianus: predation on and diet overlap with native frogs on Daishan island, China. J Herpetol, 39: 668–674
Zar J. H. 1999. Biostatistical analysis. Upper Saddle River, NJ, USA: Prentice Hall


Last Update: 2016-01-25