Baojun Sun,Wenqi Tang,Zhigao Zeng and Weiguo Du.The Seasonal Acclimatisation of Locomotion in a Terrestrial Reptile, Plestiodon chinensis (Scincidae)[J].Asian Herpetological Research(AHR),2014,5(3):197-203.[doi:10.3724/SP.J.1245.2014.00197]
Click Copy

The Seasonal Acclimatisation of Locomotion in a Terrestrial Reptile, Plestiodon chinensis (Scincidae)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2014 VoI.5 No.3
Research Field:
Original Article
Publishing date:


The Seasonal Acclimatisation of Locomotion in a Terrestrial Reptile, Plestiodon chinensis (Scincidae)
Baojun Sun12 Wenqi Tang12 Zhigao Zeng1 and Weiguo Du1*
1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing, China
Lizard temperature terrestrial ectotherms thermal acclimation
Studies of the seasonal acclimatisation of behavioural and physiological processes usually focus on aquatic or semi-aquatic ectotherms and focus less effort on terrestrial ectotherms that experience more thermally heterogeneous environments. We conducted comparative studies and thermal acclimation experiments on the locomotion of the Chinese skink (Plestiodon chinensis) to test whether seasonal acclimatisation in locomotion exists in these terrestrial ectothermic vertebrates, and whether seasonal acclimatisation is predominantly induced by thermal environments. In natural populations, skinks ran faster during the summer season than during the spring season at high-test temperatures ranging from 27°C to 36°C but not at low-test temperatures ranging from 18°C to 24°C. In contrast, the thermal acclimation experiments showed that the cold-acclimated skinks ran faster than the warm-acclimated skinks at the low-test temperatures but not at high-test temperatures. Therefore, the seasonal acclimatisation occurs to P. chinensis, and may be induced by temperature as well as other factors like food availability, as indicated by the seasonal variation in the thermal dependence of locomotion, and the discrepancy between seasonal acclimatisation and thermal acclimation on locomotion.


Adolph S. C., Porter W. P. 1993. Temperature, activity, and lizard life-histories. Am Nat, 142: 273–295
Angilletta M. J. Jr. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford: Oxford University Press
Angilletta M. J. Jr., Niewiarowski P. H., Navas C. A. 2002. The evolution of thermal physiology in ectotherms. J Therm Biol, 27: 249–268
Avery R. A. 1982. Field studies of body temperatures and thermoregulation. 93–166. In Gans C., Pough F. H. (Eds.), Biology of the Reptilia, Vol. 12, Physiological Ecology. New York: Academic Press
Carey G. R., Franklin C. E. 2009. Effect of incubation and rearing temperature on locomotor ability in barramundi, Lates calcarifer Bloch, 1790. Mar Freshwater Res, 60: 203–210
Carrier D. R. 1990. Activity of the hypaxial muscles during walking in the lizard Iguana iguana. J Exp Biol, 152: 453–470
Dillon M. E., Wang G., Huey R. B. 2010. Global metabolic impacts of recent climate warming. Nature, 467: 704–706
Feder M. E., Hofmann G. E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol, 61: 243–282
Fry F. E. J., Hart J. S. 1948. Cruising speed of goldfish in relation to water temperature. J Fish Res Board Can. 7: 169–175
Gotthard K., Nylin S. 1995. Adaptive plasticity and plasticity as an adaptation-a selective review of plasticity in animal morphology and life-history. Oikos, 74: 3–17
Guderley H., St Pierre J. 2002. Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change. J Exp Biol, 205: 2237–2249
Higham T. E., Korchari P. G., McBrayer L. D. 2011. How muscles define maximum running performance in lizards: an analysis using swing and stance phase muscles. J Exp Biol, 214: 1685–1691
Huey R. B., Bennett A. F., John-Alder H., Nagy K. A. 1984. Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim Behav, 32: 41–50
Huey R. B., Peterson C. R., Arnold S. J., Porter W. P. 1989. Hot rocks and not-so-hot rocks: retreat-site selection by garter snakes and its thermal consequences. Ecology, 70: 931–944
Husak J. F., Fox S. F., Lovern M. B., Van Den Bussche R. A. 2006. Faster lizards sire more offspring: sexual selection on whole animal performance. Evolution, 60: 2122–2130
Ji X., Du W. G., Sun P. Y. 1996. Body temperature, thermal tolerance and influence of temperature on sprint speed and food assimilation in adult grass lizards, Takydromus septentrionalis. J Therm Biol, 21: 155–161.
Ji X., Zheng X. Z., Xu Y. G., Sun R. M. 1995. Some aspects of thermal biology of the skink Eumeces chinensis. Acta Zool Sin, 41: 268–274 (In Chinese)
Johnston I. A., Sidell B. D., Driedzic W. R. 1985. Force-velocity characteristics and metabolism of carp muscle fibers following temperature acclimation. J Exp Biol, 119: 239–249
Johnston I. A., Temple G. K. 2002. Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol, 205: 2305–2322
Le Galliard J., Clobert J., Ferriere R. 2004. Physical performance and darwinian fitness in lizards. Nature, 432: 502–505
Leroi A. M., Bennett A. F., Lenski R. E. 1994. Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci USA, 91: 1917–1921
Lima S. L., Bednekoff P. A. 1999. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am Nat, 153: 649–659
Madsen T., Shine R. 2000. Rain, fish and snakes: climatically driven population dynamics of Arafura filesnakes in tropical Australia. Oecologia, 124: 208–215
Navas C. A., James R. S., Wakeling J. M., Kemp K. M., Johnston I. A. 1999. An integrative study of the temperature dependence of whole animal and muscle performance during jumping and swimming in the frog Rana temporaria. J Comp Physiol B, 169: 588–596
Rall J. A., Woledge R. C. 1990. Influence of temperature on mechanics and energetics of muscle contraction. Am J Physiol Regul Integr Comp Physiol 259: R197–203
Rice A. N., Westneat M. W. 2005. Coordination of feeding, locomotor and visual systems in parrottishes (Teleostei: Labridae). J Exp Biol, 208: 3503–3518
Ritter D. A. 1995. Epaxial muscle function during locomotion in a lizard (Varanus salvator) and the proposal of a key innovation in the vertebrate axial musculoskeletal system. J Exp Biol, 198: 2477–2490
Ritter D. A. 1996. Axial muscle function during lizard locomotion. J Exp Biol, 199: 2499–2510
Root T. L., Price J. T., Hall K. R., Schneider S. H., Rosenzweig C., Pounds J. A. 2003. Fingerprints of global warming on wild animals and plants. Nature, 421: 57–60
Row J. R., Blouin–Demers G. 2006.Thermal quality influences effectiveness of thermoregulation, habitat use, and behaviour in milk snakes. Oecologia, 148: 1–11
Scheiner S. M. 1993. Genetics and evolution of phenotypic plasticity. Ann Rev Ecol Syst, 24: 35–68
Schmidt-Nielsen K. 1990. Animal physiology: adaptation and environment (4th ed). Cambridge, UK: Cambridge University Press
Seebacher F., James R. S. 2008. Plasticity of muscle function in a thermoregulating ectotherm (Crocodylus porosus): biomechanics and metabolism. Am J Physiol Regul Integr Comp Physiol, 294: R1024–R1032
Shu L., Sun B. J., Du W. G. 2010. Effects of temperature and food availability on selected body temperature and locomotor performance of Plestiodon (Eumeces) chinensis. Anim Biol, 60: 337–347
Somero G. N. 2005. Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits. Front Zool, Doi: 10.1186/1742-9994-2-1
Stevenson R. D. 1985. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am Nat, 126: 362–386
Strobbe F., McPeek M. A., De Block M., De Meester L., Stoks R. 2009. Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. J Evol Biol, 22: 1172–1182
Sun B. J., Du W. G., Shu L., Chen Y., Wang Y. 2011. The influence of thermal environment and food availability on testosterone and gonadal recrudescence in male Chinese skinks [Plestiodon (Eumeces) chinensis]. Gen Comp Endocr, 170: 449–454
Weinig C. 2000. Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution, 54: 441–451
Wilson R. S., Franklin C. E. 2002. Testing the beneficial acclimation hypothesis. Trends Ecol Evol, 17: 66–70
Wilson R. S., James R. S., Johnston I. A. 2000. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis. J Comp Physiol B, 170: 117–124
Yom-Tov Y., Geffen E. 2006. Geographic variation in body size: the effects of ambient temperature and precipitation. Oecologia, 148: 213–218
Zhao E. M., Adler M. 1993. Herpetology of China. Oxford, Ohio: Society for the Study of Amphibians and Reptiles
Zhao E. M., Zhao K. T., Zhou K. Y. 1999. Fauna Sinica, Reptilia Vol. 2. Beijing: Science Press


Last Update: 2016-01-25