Xiuyun YUAN,Xiaomao ZENG and Xianguang GUO.MHC Class I Exon 4 in the Multiocellated Racerunners (Eremias multiocellata): Polymorphism, Duplication and Selection[J].Asian Herpetological Research(AHR),2014,5(2):91-103.[doi:10.3724/SP.J.1245.2014.00091]
Click Copy

MHC Class I Exon 4 in the Multiocellated Racerunners (Eremias multiocellata): Polymorphism, Duplication and Selection
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2014 VoI.5 No.2
Research Field:
Original Article
Publishing date:


MHC Class I Exon 4 in the Multiocellated Racerunners (Eremias multiocellata): Polymorphism, Duplication and Selection
Xiuyun YUAN12 Xiaomao ZENG1 and Xianguang GUO1*
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
MHC class I Eremias multiocellata trans-species polymorphism balancing selection purifying selection birth-and-death evolution
The major histocompatibility complex (MHC) is a dynamic genetic region with an essential role in the adaptive immunity of jawed vertebrates. The MHC polymorphism is affected by many processes such as birth-and-death evolution, gene conversion, and concerted evolution. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. However, the investigation of this region in non-avian reptiles is still in its infancy. We present the first characterization of MHC class I genes in a species from the family Lacertidae. We assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 4 among 37 individuals of Eremias multiocellata from a population in Lanzhou, China. We generated 67 distinct DNA sequences using cloning and sequencing methods, and identified 36 putative functional variants as well as two putative pseudogene-variants. We found the number of variants within an individual varying between two and seven, indicating that there are at least four MHC class I loci in this species. Gene duplication plays a role in increasing copy numbers of MHC genes and allelic diversity in this species. The class I exon 4 sequences are characteristic of low nucleotide diversity. No signal of recombination is detected, but purifying selection is detected in β2-microglobulin interaction sites and some other silent sites outside of the function-constraint regions. Certain identical alleles are shared by Eremias multiocellata and E. przewalskii and E. brenchleyi, suggesting trans-species polymorphism. The data are compatible with a birth-and-death model of evolution.


Apasov S., Sitkovsky M. 1993. Highly lytic CD8+, αβ T-cell receptor cytotoxic T cells with major histocompatibility complex (MHC) class I antigen-directed cytotoxicity in β2-microglobulin, MHC class I-deficient mice. Proc Natl Acad Sci U S A, 90: 2837–2841
Babik W. 2010. Methods for MHC genotyping in non-model vertebrates. Mol Ecol Resour, 10: 237–251
Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Stromiger J. L., Wiley D. C. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature, 329: 506–512
Bonhomme M., Doxiadis G. G. M., Heijmans C. M. C., Vervoort V., Otting N., Bontrop R. E., Crouau-Roy B. 2008. Genomic plasticity of the immune-related Mhc class I B region in macaque species. BMC Genomics, 9: 514–524
Burland T. G. 2000. DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol, 132: 71–91
Consuegra S., Megens H. J., Schaschl H., Leon K., Stet R. J., Jordan W. C. 2005. Rapid evolution of the MH class I locus results in different allelic compositions in recently diverged populations of Atlantic salmon. Mol Biol Evol, 22: 1095–1106
Cummings S. M., McMullan M., Joyce D. A., van Oosterhout C. 2010. Solutions for PCR, cloning and sequencing errors in population genetic analysis. Conserv Genet, 11: 1095–1097
Dai X., Zeng X., Chen B., Wang Y. 2004. The research on the karyotypes of six species in the genus Eremias from China. Hereditas, 26: 669–675(In Chinese with English abstract)
Danchin E., Vitiello V., Vienne A., Richard O., Gouret P., McDermott M. F., Pontarotti P. 2004. The major histocompatibility complex origin. Immunol Rev, 198: 216–232
Darriba D., Taboada G. L., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods, 9: 772–784
Delport W., Poon A. F., Frost S. D., Kosakovsky Pond S. L. 2010. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26: 2455–2457
de Bakker P. I., Raychaudhuri S. 2012. Interrogating the major histocompatibility complex with high-throughput genomics. Hum Mol Genet, 21: 29–36
Eimes J. A., Bollmer J. L., Whittingham L. A., Johnson J. A., van Oosterhout C., Dunn P. O. 2011. Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and copy number variation. J Evol Biol, 24: 1847–1856
Figueroa F., Mayer W. E., Sato A., Zaleska-Rutczynska Z., Hess B., Tichy H., Klein J. 2001. MHC class I genes of swordtail fishes, Xiphophorus: variation in the number of loci and existence of ancient gene families. Immunogenetics, 53: 695–708
Fitch W. M. 2000. Homology: a personal view on some of the problems. Trends Genet, 16: 227–231
Gelman A., Rubin D. B. 1992. Inference from iterative simulation using multiple sequences. Stat Sci, 7: 457–511
Glaberman S., Caccone A. 2008. Species-specific evolution of class I MHC genes in iguanas (Order: Squamata; Subfamily: Iguaninae). Immunogenetics, 60: 371–382
Gorer P. A. 1936. The detection of antigenic differences in mouse erythrocytes by the employment of immune sera. Int J Clin Exp Pathol, 17: 42–50
Griggio M., Biard C., Penn D. J., Hoi H. 2011. Female house sparrows "count on" male genes: experimental evidence for MHC-dependent mate preference in birds. BMC Evol Biol, 11: 44–50
Grossberger D., Parham P. 1992. Reptilian class I major histocompatibility complex genes reveal conserved elements in class I structure. Immunogenetics, 36: 166–174
Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol, 59: 307–321
Guo X., Dai X., Chen D., Papenfuss T. J., Ananjeva N. B., Melnikov D. A., Wang Y. 2011. Phylogeny and divergence times of some racerunner lizards (Lacertidae: Eremias) inferred from mitochondrial 16S rRNA gene segments. Mol Phylogenet Evol, 61: 400–412
Haddrill P. R., Halligan D. L., Tomaras D., Charlesworth B. 2007. Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol, 8: 181–189
Hedrick P. W. 1998. Balancing selection and MHC. Genetica, 104: 207–214
Hughes A. L., Nei M. 1988. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature, 335: 167–170
Hughes A. L., Yeager M. 1998. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet, 32: 415–435
Jaratlerdsiri W., Isberg S. R., Higgins D. P., Gongora J. 2012. MHC class I of saltwater crocodiles (Crocodylus porosus): polymorphism and balancing selection. Immunogenetics, 64: 825–838
Jaratlerdsiri W., Isberg S.R., Higgins D.P., Ho S.Y., Salomonsen J., Skjodt K., Miles L.G., Gongora J. 2014. Evolution of MHC class I in the Order Crocodylia. Immunogenetics, 66: 53–65
Kaufman J., Andersen R., Avila D., Engberg J., Lambris J., Salomonsen J., Welinder K., Skj?dt K. 1992. Different features of the MHC class I heterodimer have evolved at different rates. Chicken B-F and β2-microglobulin sequences reveal invariant surface residues. J Immunol, 148: 1532–1546
Kelley J., Walter L., Trowsdale J. 2005. Comparative genomics of major histocompatibility complexes. Immunogenetics, 56: 683–695
Kiemnec-Tyburczy K. M., Richmond J. Q., Savage A. E., Lips K. R., Zamudio K. R. 2012. Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication. Heredity, 109: 146–155
Klein J. 1987. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol, 19: 155–162
Klein J., Sato A., Nagl S., ?hUigín C. 1998. Molecular trans-species polymorphism. Annu Rev Ecol Evol Syst, 29: 1–21
Klein J., Sato A., Nikolaidis N. 2007. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet, 41: 281–304
Kosakovsky Pond S. L., Frost S. D. 2005. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol, 22: 1208–1222
Kosakovsky Pond S. L., Posada D., Gravenor M. B., Woelk C. H., Frost S. D. 2006. Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol, 23:1891–1901
Kulski J. K., Shiina T., Anzai T., Kohara S., Inoko H. 2002. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev, 190: 95–122
Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451–1452
Lukas D., Vigilant L. 2005. Reply: facts, faeces and setting standards for the study of MHC genes using noninvasive samples. Mol Ecol, 14: 1601–1602
Madsen T., Olsson M., Wittzell H., Stille B., Gullberg A., Shine R., Andersson S., Tegelstr?m, H. 2000. Population size and genetic diversity in sand lizards (Lacerta agilis) and adders (Vipera berus). Biol Conserv, 94: 257–262
Malaga-Trillo E., Zaleska-Rutczynska Z., McAndrew B., Vincek V., Figueroa F., Sultmann H., Klein J., 1998. Linkage relationships and haplotype polymorphism among cichlid MHC class II B loci. Genetics, 149: 1527–1537
Maruyama T., Nei M. 1981. Genetic variability maintained by mutation and over-dominant selection in finite populations. Genetics, 98: 441–459
Mehta R. B., Nonaka M. I., Nonaka M. 2009. Comparative genomic analysis of the major histocompatibility complex class I region in the teleost genus Oryzias. Immunogenetics, 61: 385–399
Miller H. C., Andrews-Cookson M., Daugherty C. H. 2007. Two patterns of variation among MHC class I loci in tuatara (Sphenodon punctatus). J Hered, 98: 666–677
Miller H. C., Belov K., Daugherty C. H. 2006. MHC class I genes in the tuatara (Sphenodon spp.): evolution of the MHC in an ancient reptilian order. Mol Biol Evol, 23: 949–956
Millinski M. 2006. The major histocompatibility complex, sexual selection, and mate choice. Annu Rev Ecol Evol Syst, 37: 159–186
Murphy B. F., Thompson M. B., Belov K. 2009. Evolution of viviparity and the maternal immune system: major histocompatibility complex (MHC) class I genes in skinks. Orbit, 1: 1–17
Nei M., Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol, 3: 418–426
Nei M., Rooney A. P. 2005. Concerted and birth-and-death evolution of multigene families. Annu Rev Genet, 39: 121–152
Nei, M., Gu X., Sitnikova T. 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A, 94: 7799–7806
Nonaka M. I., Aizawa K., Mitani H., Bannai H. P., Nonaka M. 2011. Retained orthologous relationships of the MHC class I genes during euteleost evolution. Mol Biol Evol, 28: 3099–3112
Olsson M., Madsen T., Nordby J., Wapstra E., Ujvari B., Wittsell H. 2003. Major histocompatibility complex and mate choice in sand lizards. Proc Biol Sci, 270: 254–256
Orita M., Iwahana H., Kanazawa H., Haysdhi K., Sekiya T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A, 86: 2766–2770
Otten G. R., Bikoff E., Ribaudo R. K., Kozlowski S., Margulies D. H., Germain R. N. 1992. Peptide and β2-microglobulin regulation of cell surface MHC class I conformation and expression. J Immunol, 148: 3723–3732
Piertney S. B., Oliver M. K. 2006. The evolutionary ecology of the major histocompatibility complex. Heredity, 96: 7–21
Piontkivska H., Nei M. 2003. Birth-and-death evolution in primate MHC class I genes: divergence time estimates. Mol Biol Evol, 20: 601–609
Radtkey R. R., Becker B., Miller R. D., Riblet R., Case T. J. 1996. Variation and evolution of class I MHC in sexual and parthenogenetic geckos. Proc Biol Sci, 263: 1023–1032
Rambaut A., Drummond A. J. 2009. Tracer v1.5. Retrieved from http://beast.bio.ed.ac.uk/Tracer
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., H?hna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol, 61: 539–542
Saper M., Bjorkman P., Wiley D. 1991. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 ? resolution. J Mol Biol, 219: 277–319
Shand R., Dixon B. 2001. Teleost major histocompatibility genes: diverse but not complex. Mod Asp Immunobiol, 2: 66–72
Shiina T., Shimuzu S., Hosomichi K., Kohara S., Watanabe S., Hanzawa K., Beck S., Kulski J.K., Inoko H. 2004. Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol, 172: 6751–6763
Siddle H. V., Deakin J. E., Baker M. L., Miller R. D., Belov K. 2006. Isolation of major histocompatibility complex class I genes from the tammar wallaby (Macropus eugenii). Immunogenetics, 58: 487–493
Snell G. D. 1948. Methods for the study of histocompatibility genes. J Genet, 49: 87–108
Sommer S. 2005. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool, 2: 1–18
Spurgin L. G., van Oosterhout C., Illera J. C., Bridgett S., Gharbi K., Emerson B. C., Richardson D. S. 2011. Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol, 20: 5213–5225
Stiebens V. A., Merino S. E., Chain F. J., Eizaguirre C. 2013. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing. BMC Evol Biol, 13: 1–11
Sunnucks P., Wilson A. C., Beheregaray L. B., Zenger K., French J., Taylor A. C. 2000. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol, 9: 1699–1710
Szczerbak N. N. 2003. Guide to the Reptiles of the Eastern Palearctic. Malabar, Florida: Krieger Publishing Company, 260 pp
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., and Kumar S. 2011. MEGA5: molecular Eevolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28: 2731–2739
Ujvari B., Belov K. 2011. Major histocompatibility complex (MHC) markers in conservation biology. Int J Mol Sci, 12: 5168–5186
van Oosterhout C. 2009. A new theory of MHC evolution: beyond selection on the immune genes. Proc Biol Sci, 276: 657–665
Vogel T. U., Evans D. T., Urvater J. A., O'Connor D. H., Hughes A. L., Watkins D. I. 1999. Major histocompatibility complex class I genes in primates: co-evolution with pathogens. Immunol Rev, 167: 327–337
Wegner K. M., Reusch T. B. H., Kalbe M. 2003. Multiple infections drive major histocompatibility complex polymorphism in the wild. J Evol Biol, 16: 224–232
Xu S., Sun P., Zhou K., Yang G. 2007. Sequence variability at three MHC loci of finless porpoises (Neophocaena phocaenoides). Immunogenetics, 59: 581–592
Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol, 24: 1586–1591
Yang Z., Wong W. S. W., Nielsen R. 2005. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol, 22: 1107–1118


Last Update: 2016-01-25