Mi ZHAO,Yan SHI,Jian ZHAO,et al.Molecular Characterization and Expression Analysis of Matrix Metalloproteinase 3 in the Asian Yellow Pond Turtle Mauremys mutica[J].Asian Herpetological Research(AHR),2014,5(1):38-48.[doi:10.3724/SP.J.1245.2014.00038]
Click Copy

Molecular Characterization and Expression Analysis of Matrix Metalloproteinase 3 in the Asian Yellow Pond Turtle Mauremys mutica
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2014 VoI.5 No.1
Research Field:
Original Article
Publishing date:


Molecular Characterization and Expression Analysis of Matrix Metalloproteinase 3 in the Asian Yellow Pond Turtle Mauremys mutica
Mi ZHAO Yan SHI Jian ZHAO Xinping ZHU* Kunci CHEN Debo PAN and Chengqing WEI
Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fishery Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China
Asian yellow pond turtle Mauremys mutica Serratia marcescens Matrix metallopeptidase 3 Immune responses
Matrix metallopeptidase 3 is a zinc-containing proteinase that participates in tissue remodeling and immune responses. In this study, a cDNA encoding matrix metallopeptidase 3 was isolated and characterized from the Asian yellow pond turtle Mauremys mutica (designated as MaMMP3). The MaMMP3 cDNA is 1805 bp and consists of a 5'-untranslated region (UTR) of 56 bp, a 3'-UTR of 243 bp, and an open reading frame (ORF) of 1506 bp encoding 481 amino acids. Homology analysis of MaMMP3 revealed that the MaMMP3 shared 25%–63% similarity to other known MMP3 sequences. The genomic sequence covers 6007 bp. Comparative analysis of the cDNA sequence revealed that the Asian yellow pond turtle MMP3 has eight exons and seven introns. The phylogenetic tree showed that the MaMMP3 is closely related to Gallus gallus MMP3 and Taeniopygia guttata MMP3. The mRNA expression of the MaMMP3 in normal group without any bacterial challenge could be detected in all studied tissues including kidney, heart, live and spleen, with the highest level in the spleen. The results of immune challenge showed that the expression level of MaMMP3 was up-regulated in the spleen and liver. These results provided an important information for studying the roles of Asian yellow pond turtle MMP3 in immunity further.


Altschul S. F., Madden T. L., Schaffer A. A., Zhang J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res, 25: 389–402
Bendtsen J. D., Nielsen H. 2004. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 340: 783–795
Campanella J. J., Bitincka L., Smalley J. 2003. MatGat: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics, 4: 1–4
Combet C., Blanchet C., Geourjon C. 2000. NPS@: Network Protein Sequence Analysis. Trends Biochem Sci, 25: 147–150
Endege W. O., Steinmann K. E., Boardman L. A., Thibodeau S. N. 1999. Representative cDNA libraries and their utility in gene expression profiling. Biotechniques, 26: 542–550
Fu L., Hasebe T., Ishizuya-Oka A., Shi Y. B. 2007. Roles of matrix metallo-proteinases and ECM remodeling during thyroid hormone-dependent intestinal metamorphosis in Xenopus laevis. Organogenesis, 3: 14–19
Fu L., Das B., Mathew S. 2009. Genome-wide identification of Xenopus matrix metalloproteinases: conservation and unique duplications in amphibians. BMC Genomics, 10: 81
Gattiker A., Gasteiger E., Bairoch A. 2002. ScanProsite: A reference implementation of a PROSITE scanning tool. Applied Bioinformatics, 1: 107–108
Gui, J. F., Zhu, Z. Y. 2012. Molecular basis and genetic improvement of economically important traits in aquaculture animals (review). Chin Sci Bull, 57: 1751–1760
Gurney K. J., Estrada E. Y., Rosenberg G. A. 2006. Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil in?ltration in neuroin?ammation. Neurobiol Dis, 23: 87–96
Handley S. A., Miller V. L. 2007. General and speci?c host responses to bacterial infection in Peyer’s patches: A role for stromelysin-1(matrix metalloproteinase-3) during Salmonella enterica infection. Mol Microbiol, 64: 94–110
Haro H., Crawford H. C., Fingleton B., MacDougall J. R., Shinomiya K., Spengler D. M., Matrisian L. M. 2000. Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J Clin Invest, 105: 133–141
Jones B. L., Gorman L. J., Simpson J., Curran E. T., McNameea S., Lucasc C., Michiec J., Platta D. J., Thakker B. 2000. An outbreak of Serratia marcescens in two neonatal intensive care units. J Hosp Infect, 46: 314–319
Joyce W. G., Parham J. F., Gauthier J. 2004. Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. J Paleontol, 78: 989–1013
Kapustin Y., Souvorov A., Tatusova T., Lipman D. 2008. Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct, 3: 20
Larkin M. A., Blackshields G., Brown N. P. 2007. ClustalW and ClustalX version 2, Bioinformatics, 23: 2947–2948
Lau M., Shi H. 2000. Conservation and trade of terrestrial and freshwater turtles and tortoises in the People’s Republic of China. Chelonian Res Monogr, 2: 30–38
Letunic I., Copley R. P., Pils B., Pinkert S. 2006. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res, 34: 257–260
Li C. K., Pender S. L., Pickard K. M., Chance V., Holloway J. A., Huett A., Gon?alves N. S., Mudgett J. S., Dougan G., Frankel G., MacDonald T. T. 2004. Impaired immunity to intestinal bacterial infection in stromelysin-1 (matrix metalloproteinase-3)-de?cient mice. J Immunol, 173:5171–5179
Maeda S., Dean D. D., Gomez R., Schwartz Z., Boyan B. D. 2002. The ?rst stage of transforming growth factor beta1 activation is release of the large latent complex from the extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1 (MMP3). Calcif Tissue Int, 70: 54–65
McQuibban G. A., Butler G. S., Gong J. H., Bendall L., Power C., Clark-Lewis I., Overall C.M. 2001. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem, 276: 43503–43508
McQuibban G. A., Gong J. H., Wong J. P., Wallace J. L., Clark-Lewis I., Overall C. M. 2002. Matrix metalloproteinase processing of monocyte chemoat-tractant proteins generates CC chemokine receptor antagonists with anti-in?ammatory properties in vivo. Blood, 100: 1160–1167
Mudgett J. S., Hutchinson N. I., Chartrain N. A., Forsyth A. J., McDonnell J., Singer I. I., Bayne E. K., Flanagan J., Kawka D., Shen C. F., Stevens K., Chen H., Trumbauer M., Visco D. M. 1998. Susceptibility of stromelysin 1-de?cient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum, 41: 110–121
Mun-Bryce S., Lukes S. A., Wallace J., Lukes-Marx M. 2002. Stromelysin-1 and gelatinase A are upregulated before TNF-alpha in LPS-stimulated neuroin?ammation. Brain Res, 933: 42–49
Murphy, G., Stanton, H., Cowell, S., Butler, G., Kn?uper, V., Atkinson, S., Gavrilovic, J. 1999. Mechanisms for pro matrix metalloproteinase activation. Apmis, 107: 38–44
Nielsen M., Lundegaard C., Lund O., Petersen T. N. 2010. CPHmodels-3.0—Remote homology modeling using structure guided sequence profiles. Nucleic Acids Res, 38, 38 (suppl 2): W576–W581
Pagenstecher A., Stalder A. K., Kincaid C. L. 2000. Regulation of Matrix Metalloproteinases and Their Inhibitor Genes in Lipopoly saccharide-Induced Endotoxemia in Mice. Brain, 157: 197–210
Pharham J. F., Shi H. 2001. The discovery of Mauremys iversoni-like turtles at a turtle farm in Hainan Province, China: The counterfeit golden coin. Asiatic Herpetol Res, 9: 71–77
Prescott L., Harley J., Klein S. 1999. Microbiologie. De Boek University, Leuven
Sarras M. P. J., Yan L., Leontovich A., Zhang J. S. 2002. Structure, expression, and developmental function of early divergent forms of metalloproteinases in hydra. Cell Res, 12: 163–176
Schonbeck U., Mach F., Libby P. 1998. Generation of biologically active IL-1 beta by matrix metalloproteinases, a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol, 161: 3340–3346
Schultz J., Milpetz F., Bork P., Ponting C. P. 2008. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc Natl Acad Sci, 95: 57–64
Shi H. T., Pharham J. F. 2001. Preliminary observations of a large turtle farm in Hainan Province. Turtle and Tortoise Newsletter China, 3: 2–4
Silence J., Lupu F., Collen D., Lijnen H. R. 2001. Persistence of atherosclerotic plaque but reduced aneurysmformation in mice with stromelysin-1 (MMP3) gene inactivation. Arterioscler Thromb Vasc Biol, 21: 1440–1445
Sternlicht M. D., Lochter A., Sympson C. J., Huey B, Rougier J. P., 1999. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98: 137–146
Tamura K., Dudley J., Nei M. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol, 24: 1596–1599
Tan A. P., Zou W. M., Jiang L. 2007. Identification of SG24 Strain, a Pathogenic Bacteria Causing Ulceration of Mauremys mutica cantor. J Guangdong Ocean Univ, 27: 64–68
Uria J. A., Werb Z. 1998. Matrix metalloproteinases and their expression in mammary gland. Cell Res, 8: 187–194
van Wart H. E., Birkedal-Hansen H. 1990. The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci, 87: 5578–5582
Vu T. H., Werb Z. 2000. Matrix metalloproteinases: Effectors of development and normal physiology. Sci Signal, 14: 2123
Wang M., Qin X., Mudgett J. S., Ferguson T. A. 1999. Matrix metalloproteinase de?ciencies affect contact hypersensitivity: stromelysin-1 de?ciency prevents the response and gelatinase B de?ciency prolongs the response. Proc Natl Acad Sci, 96:6885–6889
Warner, R. L., Beltran, L., Younkin, E. M., Lewis, C. S., Weiss, S. J., Varani, J., Johnson, K. J. 2001. Role of stromelysin 1 and gelatinase B in experimental acute lung injury. Am J Resp Cell Mol, 24(5): 537–544
Wilson K. 1990. Preparation of genomic DNA from bacteria. In Ausubel F, Brent R, Kingston R, Moore D, et al. (Eds.), Current protocols in molecular biology. New York: John Wiley and Sons, Inc, 24158


Last Update: 2016-01-25