Guiying LING,Li LI,Jiuxiang GAO,et al.Geographically Distinct Expression Profile of Host Defense Peptides in the Skin of the Chinese Odorous Frog, Odorrana margaretae [J].Asian Herpetological Research(AHR),2013,4(4):288-297.[doi:10.3724/SP.J.1245.2013.000288]
Click Copy

Geographically Distinct Expression Profile of Host Defense Peptides in the Skin of the Chinese Odorous Frog, Odorrana margaretae
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2013 VoI.4 No.4
Research Field:
Original Article
Publishing date:


Geographically Distinct Expression Profile of Host Defense Peptides in the Skin of the Chinese Odorous Frog, Odorrana margaretae
Guiying LING1 Li LI1 Jiuxiang GAO3 Haining YU3 Yipeng WANG2* and Jiang ZHOU1*
1 Biology Department, Guizhou Normal University, Guiyang 550000, Guizhou, China
2 College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
3 Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116023, Liaoning, China
amphibian host defense peptides (HDPs) Odorrana margaretae antimicrobial activity anti-oxidant activity erythrocytes hemagglutinating activity
Odorrana margaretae (Anura: Ranidae) is widely distributed in the southern provinces of China. Previously, 72 antimicrobial peptides (AMPs) belonging to 21 families were identified from the skin of O. margaretae, which were captured in the Hunan province. In the present study, five O. margaretae frogs were captured from the Guizhou province and a total of 28 cDNAs encoding 17 host defense peptides (HDPs) belonging to 14 families were cloned from the skin cDNA library of O. margaretae. Among the 17 HDPs, only one (brevinin-1-Omar5) had been characterized. The distinct HDP expression profiles for O. margaretae in the previous and present study may be attributed to the environmental differences between the sampling locations and the genetic divergence among O. margaretae populations. Besides, 11 of the 17 HDPs identified in the present study were novel for ranids. In order to understand their roles in host defense reactions, three HDPs (odorranain-H-OM1, odorranain-M-OM and ranatuerin-2-OM), which possess low sequence similarity with the known amphibian HDPs, were selected for further chemical synthesis and functional analysis. Odorranain-H-OM1 showed direct antimicrobial activity against bacteria and fungi. Odorranain-M-OM exhibited concentration-dependent anti-oxidant activity. Ranatuerin-2-OM showed lectin-like activity and could strongly hemagglu -tinate human intact erythrocytes with or without the presence of Ca2+. The diverse activities of HDPs implied that they may play different roles in host defense reactions of O. margaretae.


Auvynet C., Rosenstein Y. 2009. Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J, 276: 6497–6508
Bevins C. L., Zasloff M. 1990. Peptides from frog skin. Annu Rev Biochem, 59: 395–414
Choi K. Y., Chow L. N., Mookherjee N. 2012. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun, 4: 361–370
Conlon J. M. 2011. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci, 68: 2303–2315
Conlon J. M., Kolodziejek J., Nowotny N. 2004. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta, 1696: 1–14
Crespi E. J., Denver R. J. 2005. Roles of stress hormones in food intake regulation in anuran amphibians throughout the life cycle. Comp Biochem Physiol A Mol Integr Physiol, 141: 381–390
Davidson C., Benard M. F., Shaffer H. B., Parker J. M., O’Leary C, Conlon J. M., Rollins-Smith L. A. 2007. Effects of chytrid and carbaryl exposure on survival, growth and skin peptide defenses in foothill yellow-legged frogs. Environ Sci Technol, 41: 1771–1776
Fujii Y., Dohmae N., Takio K., Kawsar S. M., Matsumoto R., Hasan I., Koide Y., Kanaly R. A., Yasumitsu H., Ogawa Y., Sugawara S., Hosono M., Nitta K., Hamako J., Matsui T., Ozeki Y. 2012. A lectin from the mussel Mytilus galloprovincialis has a highly novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells. J Biol Chem, 287: 44772–44783
Hancock R. E., Sahl H. G. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 24: 1551–1557
He W. Y., Feng F. F., Huang Y., Guo H. H., Zhang S. Y., Li Z., Liu J. Z., Wang Y. P., Yu H. N. 2012. Host defense peptides in skin secretions of Odorrana tiannanensis: Proof for other survival strategy of the frog than merely anti-microbial. Biochimie, 94: 649–655
Jolivet Jaudet G., Leloup Hatey J. 1984. Variations in aldosterone and corticosterone plasma levels during metamorphosis in Xenopus laevis tadpoles. Gen Comp Endocrinol, 56: 59–65
Kim Y. M., Park K. I., Choi K. S., Alvarez R. A., Cummings R. D., Cho M. 2006. Lectin from the Manila clam Ruditapes philippinarum is induced upon infection with the protozoan parasite Perkinsus olseni. J Biol Chem, 281: 26854–26864
Li J. X., Wu J., Wang Y. P., Xu X. Q., Liu T. G., Lai R., Zhu H. 2008a. A small trypsin inhibitor from the frog of Odorrana grahami. Biochimie, 90: 1356–1361
Li J. X., Wu H. B., Hong J., Xu X. Q., Yang H. L., Wu B. X., Wang Y. P., Zhu J. H., Lai R., Jiang X. G., Lin D. H., Prescott M. C., Rees H. H. 2008b. Odorranalectin is a small peptide lectin with potential for drug delivery and targeting. PLoS ONE, 3: e2381
Li J. X., Xu X. Q., Xu C. H., Zhou W. P., Zhang K. Y., Yu H. N., Zhang Y. P., Zheng Y. T., Rees H. H., Lai R., Yang D. M., Wu J. 2007. Anti-infection peptidomics of amphibian skin. Mol Cell Proteomics, 6: 882–894
Liu C. B., Hong J., Yang H. L., Wu J., Ma D. Y., Li D. S., Lin D. H., Lai R. 2010. Frog skins keep redox homeostasis by antioxidant peptides with rapid radical scavenging ability. Free Radic Biol Med, 48: 1173–1181
Lu Z. K., Zhai L., Wang H., Che Q. L., Wang D., Feng F. F., Zhao Z. M., Yu H. N. 2010. Novel families of antimicrobial peptides with multiple functions from skin of Xizang plateau frog, Nanorana parkeri. Biochimie, 92: 475–481
Mechkarska M., Ahmed E., Coquet L., Leprince J., Jouenne T., Vaudry H., King J. D., Conlon J. M. 2010. Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae). Comp Biochem Physiol C Toxicol Pharmacol, 152: 467–472
Mendonca M. T., Licht P., Ryan M. J., Barnes R. 1985. Changes in hormone levels in relation to breeding behavior in male bullfrogs (Rana catesbeiana) at the individual and population levels. Gen Comp Endocrinol, 58: 270–279
Mookherjee N., Hancock R. E. 2007. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci, 64: 922–933
Rollins-Smith L. A., Ramsey J. P., Pask J. D., Reinert L. K., Woodhams D. C. 2011. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol, 51: 552–562
Tennessen J. A., Blouin M. S. 2008. Balancing selection at a frog antimicrobial peptide locus: fluctuating immune effector alleles? Mol Biol Evol, 25: 2669-2680
Tennessen J. A., Woodhams D. C., Chaurand P., Reinert L. K., Billheimer D., Shyr Y., Caprioli R. M., Blouin M. S., Rollins-Smith L. A. 2009. Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol, 33: 1247–1257
Venier P., Varotto L., Rosani U., Millino C., Celegato B., Bernante F., Lanfranchi G., Novoa B., Roch P., Figueras A., Pallavicini A. 2011. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics, 12: 69
Woodhams D. C., Alford R. A., Briggs C. J., Johnson M., Rollins-Smith L. A. 2008. Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology, 89: 1627–1639
Yang H. L., Wang X., Liu X. H., Wu J., Liu C. B., Gong W. M., Zhao Z. Q., Hong J., Lin D. H., Wang Y. Z., Lai R. 2009. Antioxidant peptidomics reveals novel skin antioxidant system. Mol Cell Proteomics, 8: 571–583
Yang X. W., Lee W. H., Zhang Y. 2012. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs. J Proteome Res, 11: 306–319
Yeung A. T., Gellatly S. L., Hancock R. E. 2011. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci, 68: 2161–2176


Last Update: 2016-01-25