Chunwang LI,Xue LIAN,Songhua TANG,et al.Diet, Food Intake of Phrynocephalus frontalis (Agamidae) and Its Potential Role in Desert Habitat[J].Asian Herpetological Research(AHR),2013,4(4):248-253.[doi:10.3724/SP.J.1245.2013.000248]
Click Copy

Diet, Food Intake of Phrynocephalus frontalis (Agamidae) and Its Potential Role in Desert Habitat
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2013 VoI.4 No.4
Page:
248-253
Research Field:
Original Article
Publishing date:
2013-12-25

Info

Title:
Diet, Food Intake of Phrynocephalus frontalis (Agamidae) and Its Potential Role in Desert Habitat
Author(s):
Chunwang LI1 Xue LIAN12 Songhua TANG1 Junhuai BI2* and Zhigang JIANG1*
1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 College of Life Science, Inner Mongolia Normal University, Hozhhot 010022, China
Keywords:
Toad-headed lizard desert lizard feeding habits prey diversity desert grassland
PACS:
-
DOI:
10.3724/SP.J.1245.2013.000248
Abstract:
We examined the dietary diversity and food intake of Phrynocephalus frontalis, compared the difference of insect diversity in the natural habitats with different lizard densities, and discussed the potential role of this lizard in the desert ecosystem. The results show that: (1) arthropodans of the orders Coleoptera, Hymenoptera and Hemiptera were major dietary components of P. frontalis; (2) coleoptera larvae always formed the predominant component of lizard diets; (3) dietary diversities of P. frontalis were not significantly different between summer and autumn or between the two sexes; (4) the similarity in trophic niches between seasons was 0.756, whereas the similarity in trophic niches between sexes was 0.994; (5) stomach content weight of lizards varied significantly among different seasons, but there was no significant difference in stomach content weight between sexes; (6) insect diversity differed significantly among the groups of the habitat with different degrees of lizard density, and the habitat with moderate lizards density had the highest insect diversity. We infer that P. frontalis prey mainly on insects and change their diet and food intake with season; males and females consumed similar preys in types and weights. As an important predator, P. frontalis could affect the insect community in the arid ecosystem of Hunshandak Desert on the Mongolian Plateau.

References:

Araújo M.B., Thuiller W., Pearson R. G. 2006. Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr, 33: 1712–1728
Borkhataria R. R., Collazo J. A., Groom M. J. 2012. Species abundance and potential biological control services in shade vs. sun coffee in Puerto Rico. Agr Ecosyst Environ, 151: 1–5
Caravello H. E., Cameron G. N. 1987. Foraging time allocation in relation to sex by the gulf coast fiddler crab (Uca panacea). Oecologia, 72: 123–126
Chi H., Zhou G., Xu Z., Yuan W. 2007. Measuring coverage of grassland vegetation using remote sensing over short distances. Acta Pratac Sin, 16(2): 105–110 (In Chinese)
Civantos E., Thuiller W., Maiorano L., Guisan A., Araújo M. B. 2012. Potential impacts of climate change on ecosystem services in Europe: The case of pest control by vertebrates. Bioscience, 62(7): 658–666
Cozzens M. 2011. Food webs, competition graphs, and habitat formation. Math Model Nat Pheno, 6(6): 22–38
Ding G., Li S., Cai J., Zhao T., Wang X., Ling X. 2005. Pasture resources evaluation and stocking density in Hunshandak Sandy Land: Case study of Zhenglan Banner, Inner Mongolia. Chin J Ecol, 24(9): 1038–1042 (In Chinese)
Fialho R. F., Rocha C. F. D., Vrcibradic D. 2000. Feeding ecology of Tropidurus torquatus: Ontogenetic shift in plant consumption and seasonal trends in diet. J Herpetol, 34(2): 325-330
Garda A. A., Costa G. C., Fran?a F. G. R., Giugliano L. G., Leite G. S., Mesquita D. O., Nogueira C., Tavares-Bastos L., Vasconcellos M. M., Vieira G. H. C., Vitt L. J., Werneck F. P., Wiederhecker H. C., Colli G. R. 2012. Reproduction, body size, and diet of Polychrus acutirostris (Squamata: Polychrotidae) in two contrasting environments in Brazil. J Herpetol, 46(1): 2–8
Hoffman S. G. 1983. Sex-related foraging behavior in sequentially hermaphroditic hogfishes (Bodianus spp.). Ecology, 64: 798–808
Huang S. C., Norval G., Wei C. S., Tso I. M. 2008. Effects of the brown anole invasion and betelnut palm planting on arthropod diversity in southern Taiwan. Zool Sci, 25: 1121–1129
Kacoliris F. P., Berkunsky I., Williams J. D. 2009. Methods for assessing population size in sand dune lizards (Liolaemus multimaculatus). Herpetologica, 65(2): 219–226
Knowlton G. F. 1938. Lizards in insect control. Ohio J Sci, 38: 235–238
Li C., Lian X., Bi J., Fang H., Maul T. L., Jiang Z. 2011. Effects of sand grain size and morphological traits on running speed of toad-headed lizard Phrynocephalus frontalis. J Arid Environ, 75: 1038–1042
Li C., Gu Y., Tang S., Fang H., Jiang G., Jiang Z. 2011. Effects of acute low temperature stress on the endocrine reactions of the Qinghai toad-headed lizard. Current Zool, 57(6): 775–780
Lian X. 2011. Spatio-temporal Distribution and Habitat Use of Steppe Toad-headed Lizard (Phrynocephalus frontalis) and Its Role in Pest Control. Master Thesis. Inner Mongolia Normal University, Huhhot, China (In Chinese)
Lian X., Jiang Z., Ping X., Tang S., Bi J., Li, C. 2012. Spatial distribution pattern of the steppe toad-headed lizard (Phrynocephalus frontalis) and its influencing factors. Asian Herpetol Res, 3(1): 46-51.
Liu H., Guo K. 2003. Classification and ordination analysis of plant communities in Inter-dune lowland in Hunshandak Sandy Land. Acta Ecol Sin, 23(10): 2163–2169 (In Chinese)
Liu N., Jin Y., Yang M. 2008. Sand lizards in China. Bull Biol, 43(11): 1–3 (In Chinese)
Maia T, Almeida-Gomes M, Siqueira C. C., Vrcibradic D, Kiefer M. C., Rocha C. F. D. 2011. Diet of the lizard Ecpleopus gaudichaudii (Gymnophthalmidae) in Atlantic Rainforest, State of Rio de Janeiro, Brazil. Zoologia 28 (5): 587–592
Munkhbaatar M., Baillie J. E. M., Borkin L., Batsaikhan N., Samiya R., Semenov D. V. 2006. Mongolian Red List of Reptiles and Amphibians. London: Zoological Society of London, Regent’s Park, 41–42
Murakami M., Hirao T. 2010. Lizard predation alters the effect of habitat area on the species richness of insect assemblages on Bahamian isles. Divers Distrib, 16: 952–958
Nagy K. A. 1973. Behavior, diet and reproduction in a desert lizard, Sauromalus obesus. Copeia, 1973(1): 93–102
Nie C., Zheng Y. 2005. Study on the desertification of Hunshandak Sandy Land: A case in point of the Zhenglan Banner. J Jilin Agric Univ, 27(2): 183–189 (In Chinese)
Norval G., Hsiao W., Huang S., Chen C. 2010. The diet of an introduced lizard species, the brown anole (Anolis sagrei), in Chiayi County, Taiwan. Russ J Herpetol, 17(2): 131–138
Pacala S., Roughgarden J. 1984. Control of arthropod abundance by anolis lizards on St. Eustatius (Neth. Antilles). Oecologia, 64(2): 160–162
Peng Y., Jiang G., Niu S., Liu M., Ding S., Liu S. 2006. Communities of typical sand dune-fixed plants in the central part of Hunshandak Sandy Region. Acta Bot Boreal-Occident Sin, 26(7): 1414–1419 (In Chinese)
Rose B. 1982. Food intake and reproduction in Anolis acutus. Copeia, 1982(2): 322–330
Sales R. F. D., Ribeiro L. B., Jorge J. S., Freire E. M. X. 2012. Feeding habits and predator-prey size relationships in the whiptail lizard Cnemidophorus ocellifer (Teiidae) in the semiarid region of Brazil. S Am J Herpetol, 7(2): 149–156
Shannon C. E., Weaver W. 1949. The Mathematical Theory of Communication. Urbana: University of Illinois Press
Spiller D. A., Schoener T. W. 1990. Lizards reduce food consumption by spiders: Mechanisms and consequences. Oecologia, 83: 150 –161
Spiller D. A., Schoener T. W. 1997. Folivory on islands with and without insectivorous lizards: An eight-year study. Oikos, 78: 15–22
Tatner P. 1983. The diet of urban magpies Pica pica. Ibis, 125: 90–107
Taylor D. J., Titus-Mcquillan J., Bauer A. M. 2012. Diet of Chalcides ocellatus (Squamata: Scincidae) from Southern Egypt. Bull Peabody Mus Nat Hist, 53(2): 383–388
Telemeco R. S., Radder R. S., Baird T. A., Shine R. 2010. Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biol J Linn Soc, 100: 642–655
Verwaijen D., Van Damme R., Herrel A. 2002. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric Lacertid lizards. Funct Ecol, 16(6): 842–850
Vitt L. J., Pianka E. R. 2004. Historical patterns in lizard ecology: What teiids can tell us about lacertids. In Pérez-Mellado V., Riera N., Perera A. (Eds.), The Biology of Lacertid lizards. Evolutionary and Ecological Perspectives. Institut Menorquí d’Estudis. Recerca, 8: 139–157
Vitt L. J., Pianka E. R. 2005. Deep history impacts present-day ecology and biodiversity. PNAS, 102(22): 7877–7881
Wang Y., Fu J. 2004. Cladogenesis and vicariance patterns in the toad-headed lizard Phrynocephalus versicolor species complex. Copeia, 2004(2): 199–206
Wanger T. C., Wielgoss A. C., Motzke I., Clough Y., Brook B. W., Sodhi N. S., Tscharntke T. 2011. Endemic predators, invasive prey and native diversity. P Roy Soc B-Biol Sci, 278(1706): 690–694
White M. A., Asner G. P., Nemani R. R., Privette J. L., Running S. W. 2000. Measuring fractional cover and leaf area index in arid ecosystems: Digital camera, radiation transmittance, and laser altimetry methods. Remote Sens Environ, 74: 45–57
Zhao K. 1997. Toad-headed agamids in China. Chinese J Zool, 32(1): 15–19 (In Chinese)
Zhao K. 2001. Agamidae. In Rigan X. (Ed.), Fauna Inner Mongolia, Vol. 2. Hohhot: Inner Mongolia University Press, 160–172 (In Chinese)

Memo

Memo:
-
Last Update: 2016-01-25