Wei ZHAO and Naifa LIU.Sexual Dimorphism of Head Size in Phrynocephalus przewalskii: Testing the Food Niche Divergence Hypothesis[J].Asian Herpetological Research(AHR),2013,4(4):242-247.[doi:10.3724/SP.J.1245.2013.000242]
Click Copy

Sexual Dimorphism of Head Size in Phrynocephalus przewalskii: Testing the Food Niche Divergence Hypothesis
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2013 VoI.4 No.4
Page:
242-247
Research Field:
Original Article
Publishing date:
2013-12-25

Info

Title:
Sexual Dimorphism of Head Size in Phrynocephalus przewalskii: Testing the Food Niche Divergence Hypothesis
Author(s):
Wei ZHAO and Naifa LIU*
School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
Keywords:
Phrynocephalus przewalskii sexual size dimorphism niche divergence food composition prey size
PACS:
-
DOI:
10.3724/SP.J.1245.2013.000242
Abstract:
Sexual size dimorphism (SSD) is a general phenomenon in lizards, and can evolve through sexual selection or natural selection. But natural selection, which was thought to operate mainly through reducing the competition between the two sexes (niche divergence hypothesis), gave rise to a lot of controversy. We tested the niche divergence hypothesis in the toad-headed lizard Phrynocephalus przewalskii by comparing diet composition and prey sizes between males and females. The species was found to be sexual dimorphic, with males having relatively larger snout-vent length, head width, head length, and tail length, while females have relatively larger abdomen length. Based on analysis of 93 studied stomachs, a total of 1359 prey items were identified. The most common prey items were formicid, lygaeid and tenebrionid. The two sexes did not differ in the relative proportions of prey size categories they consumed and the dietary overlap based on prey species was high (O = 0.989). In addition, the meal size, the volume or any maximal dimension of the largest prey item in the stomach was not explained by the sexes. According to our results, food niche divergence might not play an important role in the SSD evolution of P. przewalskii.

References:

Al-Iohany A. M. 1995. The ecology of Agama yemenesis Klausewitz (Lacertilia: Agamidae) in south-western Arabia. J Arid Envir, 29: 495–503
Cox R. M., Skelly S. L., John-Alder H. B. 2003. A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution, 57: 1653–1669
Cox R. M., Butler M. A., John-Alder H. B. 2007. The evolution of sexual size dimorphism in reptiles. 38–49. In Fairbairn D. J., Blanckenhorn W. U., Székely T. (Eds.), Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. New York, America: Oxford University Press
Darwin C. 1871. The Descent of Man, and Selection in Relation to Sex. London, J. Murray
Gifford M. E., Powell R. 2007. Sexual Dimorphism and Reproductive Characteristics in Five Species of Leiocephalus Lizards from the Dominican Republic. J Herpetol, 41: 521–527
Gvozdík L., van Damme R. 2003. Evolutionary maintenance of sexual dimorphism in head size in the lizard Zootoca vivipara: a test of two hypotheses. J Zoo, 259: 7–13
Hedrick A. V., Témeles E. J. 1989. The evolution of sexual dimorphism in animals: hypotheses and tests. Trends Ecol Evol, 4: 136–138
Herrel A., Spithoven L., Van Damme R., de Vree F. 1999. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct Ecol, 13: 289–297
Herrel A., Huyghe K., Vanhooydonck B., Backeljau T., Breugelmans K., Grbac I., Van Damme R., Irschick D. J. 2008. Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. PNAS, 105: 4792–4795
Herrel A., Moore J. A., Bredeweg E. M., Nelson N. J. 2010. Sexual dimorphism, body size, bite force and male mating success in tuatara. Biol J Linn Soc, 100: 287–292
Husak J. F., Lappin A. K., Van Den Bussche R. A. 2009. The fitness advantage of a high-performance weapon. Biol J Linn Soc, 96: 840–845
Jin Y. T., Li J. L., Liu N. F. 2013. Elevation-related variation in life history traits among Phrynocephalus lineages on the Tibetan Plateau: Do they follow typical squamate ecogeographic patterns? J Zool, 290: 293–301
Johnson J. B., McBrayer L. D., Saenz D., Carpenter G. C. 2005. Allometry, sexual size dimorphism, and niche partitioning in the Mediterranean gecko (Hemidactylus turcicus). Southwest Nat, 50: 435–439
Lappin A. K., Husak J. F. 2005. Weapon performance, not size, determines mating success and potential reproductive output in the collared lizard (Crotaphytus collaris). Am Nat, 166: 426–436
Levins R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton, America: Princeton University Press
Liu N. F., Chen Q., Xie X. 1996. Reproductive ecology of Phrynocephalus przewalskii. Acta Ecol Sin, 16: 276–282 (In Chinese)
Liu N. F., Li R. D. 1995. Spatial and trophic niches of three species of lizards in desert. Acta Ecol Sin, 15: 48–53 (In Chinese)
Pianka E. R. 1971. Ecology of the agamid lizard Amphibolurus isolepis in Western Australia. Copeia, 3: 527–536
Pianka E. R. 1973. The structure of lizard communities. Annu Rev Ecol Syst, 4: 53–74.
Qi Y., Wan H. F., Gu H. J., Wang Y. Z. 2011. Do displays and badges function in establishing the social structure of male toad-headed lizards, Phrynocephalus vlangalii? J Ethol, 29: 381–387
Rouag R., Djilali H., Gueraiche H., Luiselli L. 2007. Resource partitioning patterns between two sympatric lizard species from Algeria. J Arid Environ, 69: 158–168
Saleh M., Saber S. 1988. The structure of the sand dune ecosystem of Wadi El Raiyan, Egypt. J Arid Environ, 15: 283–296
Schoener T. W. 1967. The ecological significance of sexual dimorphism in size in the lizard Anolis conspersus. Science, 155: 474
Schoener T. W. 1968. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49: 704–726
Shine R. 1989. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q Rev Biol, 64: 419–461
Urquhart J., Wang, Y., Fu J. 2009. Historical vicariance and male-mediated gene flow in the toad-headed lizards Phrynocephalus przewalskii. Mol Ecol, 18: 3714–3729
Vanhooydonck B., Cruz F. B., Abdala C. S., Az?car D. L. M., Bonino M. F., Herrel A. 2010. Sex-specific evolution of bite performance in Liolaemus lizards (Iguania: Liolaemidae): the battle of the sexes. Biol J Linn Soc, 101: 461–475
Verwaijen D., Van Damme R., Herrel A. 2002. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct Ecol, 16: 842–850
Vincent S. E., Herrel A., Irschick D. J. 2004. Sexual dimorphism in head shape and diet in the cottonmouth snake (Agkistrodon piscivorus). J Zool, 264: 53–59
Wang Y. Wang H. 1993. Geographic variation and diversity in three species of Phrynocephalus in the Tengger Desert, western China. Asiat Herpetol Res, 5: 65–73
Wang Y., Fu J. 2004. Cladogenesis and vicariance patterns in the toad-headed lizard Phrynocephalus versicolor species complex. Copeia, 2004: 199–206
Wang Y., Ji W., Zhao W., Yu N., Liu N. 2011. Geographic variation in clutch and egg size for the Lizard Phrynocephalus przewalskii (Squamata: Agamidae). Asian Herpetol Res, 2: 97–102
Xu H., Yang, F. 1995. Simulation model of activity of Phrynocephalus przewalskii. Ecol Model, 77: 197–204
Zhang X. D., Ji X., Luo L. G., Gao J., Zhang L. 2005. Sexual dimorphism and female reproduction in the Qinghai toad-headed lizard Phrynocephalus vlangalii. Acta Zool Sin, 51: 1006–1012 (In Chinese)
Zhao W., Shao M., Song S., Liu N. 2008. Diets of little owls and long-eared owls in Northwestern China. Anim Biol, 58: 211–219
Zhao W., Yu N., Wang Y., Ji W., Liu N. 2011. Female Reproductive Cycles of Phrynocephalus przewalskii (Lacertilia: Agamidae) in the Tengger Desert, China. Asian Herpetol Res, 2: 30–35
Znari M., El Mouden E. 1997. Seasonal changes in the diet of adult and juvenile Agama impalearis (Lacertilia: Agamidae) in the central Jbilet mountains, Morocco. J Arid Environ, 37: 403–412

Memo

Memo:
-
Last Update: 2016-01-25