Lijun PU and Cuijuan NIU.Molecular Cloning and Characteristics of Catalase cDNA from Chinese Soft-shelled Turtle (Pelodiscus sinensis)[J].Asian Herpetological Research(AHR),2013,4(2):90-99.[doi:10.3724/SP.J.1245.2013.00090]
Click Copy

Molecular Cloning and Characteristics of Catalase cDNA from Chinese Soft-shelled Turtle (Pelodiscus sinensis)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2013 VoI.4 No.2
Page:
90-99
Research Field:
Original Article
Publishing date:
2013-06-25

Info

Title:
Molecular Cloning and Characteristics of Catalase cDNA from Chinese Soft-shelled Turtle (Pelodiscus sinensis)
Author(s):
Lijun PU12 and Cuijuan NIU1*
1 College of Life Sciences, Beijing Normal University, Beijing 100875, China
2 College of Life Science, Heilongjiang Bayi Nongken Unversity, Daqing 163319, Heilongjiang, China
Keywords:
sequence comparison 3-D homology model expression enzyme activity Pelodiscus sinensis
PACS:
-
DOI:
10.3724/SP.J.1245.2013.00090
Abstract:
A catalase cDNA was cloned from the liver of the Chinese soft-shelled turtle (Pelodiscus sinensis) using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate primers. Both 3'-and 5'-untranslated regions were isolated by the rapid amplification of cDNA ends method (RACE). Analysis of nucleotide sequence revealed that the catalase cDNA clone consisted of 2173 bp with an open reading frame of 1587 bp encoding a protein of 528 amino acids. The calculated molecular mass of the mature protein is 59.8 kDa with an estimated pI of 6.84. The peroxisomal targeting signal SNL at the C-terminal and two putative N-glycosylation sites NLSV and NVSQ were found in the catalase. Sequence comparison showed that this catalase, deduced by the amino acid sequence, had high similarity and identity with those of vertebrates recorded in GenBank. Four functional domains and conserved amino acids responsible for binding heme and NAPDH including four essential residues were observed. The 3-D homology model of the turtle catalase was predicted by SwissModel based on the relative domains of bovine catalase structure (PDB ID: 3rgp). The mRNA expression and enzyme activities in liver, brain, spleen, kidney, heart, gut, lung and muscle were investigated, and the results showed that the mRNA and enzyme activities of catalase in these tissues were species-specific.

References:

Ansaldo M., Luquet C. M., Evelson P. A., Polo J. M., Llesuy S. 2000. Antioxidant levels from different Antarctic fish caught around South Georgia Island and Shag Rocks. Polar Biol, 23: 160–165
Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22: 195–201
Bagnyukova T. V., Storey K. B., Lushchak V. I. 2005. Adaptive response of antioxidant enzymes to catalase inhibition by aminotriazole in goldfish liver and kidney. Comp Biochem Phys B, 142: 335–341
Benkert P., Biasini M., Schwede T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27: 343–350
Brocard C., Hartig A. 2006. Peroxisome targeting signal 1: Is it really a simple tripeptide? BBA - Mol Cell Res, 1763: 1565–1573
Clerch L. B. 1995. A 3'-untranslated region of catalase mRNA composed of a stem-loop and dinucleotide repeat elements binds a 69-kDa redox-sensitive protein. Arch Biochem Biophys, 317: 267–274
Dadras S. S., Hayashi S., Reddy J. K., Yeldandi A. V. 1996. Amphibian catalase: Cloning, tisse distribution, and peroxisomal localization. Ann NY Acad Sci, 804: 792–795
Filho D. W., Giulivi C., Boveris A. 1993. Antioxidant defences in marine fish—I. Teleosts. Comp Biochem Phys C, 106: 409–413
Fita I., Rossmann M. G. 1985. The NADPH binding site on beef liver catalase. Proc Natl Acad Sci USA, 82: 1604–1608
Gerhard G. S., Kauffman E. J., Grundy M. A. 2000. Molecular cloning and sequence analysis of the Danio rerio catalase gene. Comp Biochem Phys B, 127: 447–457
Goyal M., Basak A. 2010. Human catalase: looking for complete identity. Protein Cell, 1: 888–897
Guex N., Peitsch M. C. 1997. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Eelectrophoresis, 18: 2714–2723
Hermes-Lima M., Storey J. M., Storey K. B. 2001. Antioxidant defenses and animal adaptation to oxygen availability during environmental stress. In Storey K. B., Storey J. M. (Eds.), Cell and Molecular Response to Stress. Amsterdam, Dutch: Elsevier, 263–287
Jakopitsch C., Auer M., Regelsberger G., Jantschko W., Furtmüller P. G., Rüker F., Obinger C. 2003. Distal site aspartate is essential in the catalase activity of catalase-peroxidases. Biochemistry, 42: 5292–5300
Kim J., Rhee J., Lee J., Dahms H., Lee J., Han K., Lee J. 2010. Effect of cadmium exposure on expression of antioxidant gene transcripts in the river pufferfish, Takifugu obscurus (Tetraodontiformes). Comp Biochem Phys C, 152: 473–479
Lattuca M. E., Malanga G., Hurtado C. A., Pérez A. F., Calvo J., Puntarulo S. 2009. Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae). Comp Biochem Phys B, 154: 406–411
Lushchak V. I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol, 101: 13–30
Lushchak V. I., Lushchak L. P., Mota A. A., Hermes-Lima M. 2001. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol, 280: R100–R107
Mattick J. S., Korbie D. J. 2008. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc, 3: 1452–1456
Meng Z., Zhang B. 2003. Oxidative damage of sulfur dioxide inhalation on brains and livers of mice. Environ Toxicol Phar, 13: 1–8
Nicholls P., Fita I., Loewen P. C. 2000. Enzymology and structure of catalases. Adv Inorg Chem, 51: 51–106
Ogata M., Wang D. H., Ogino K. 2008. Mammalian acatalasemia: The perspectives of bioinformatics and genetic toxicology. Acta Med Okayama, 62: 345–361
Purdue P. E., Lazarow P. B. 1996. Targeting of human catalase to peroxisome is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol, 134: 849–862
Putnam C. D., Arvai A. S., Bourne Y., Tainer J. A. 2000. Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism. J Mol Biol, 296: 295–309
Reimer D. L., Singh S. M. 1996. Distinct mRNA-binding proteins interacting with short repeat sequences of the 3'UTR may be involve in the post-transcriptional regulation of the mouse catalase gene Cas-1. DNA Cell Biol, 15: 317–328
Scandalios J. G. 2005. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Bio Res, 38: 995–1014
Schwede T., Kopp J., Guex N., Peitsch M. C. 2003. SWISS-MODEL: An automated protein homology-modeling server. Nucl Acids Res, 31: 3381–3385
Sohal R. S., Agarwal S., Sohal B. H. 1995. Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus). Mech Ageing Dev, 81: 15–25
Storey K. B. 1996. Oxidative stress: Animal adaptations in nature. Braz J Med Bio Res, 29: 1715–1733
Storey K. B. 2004. Gene regulation in physiological stress. Int Congr Ser, 1275: 1–13
Stratulat A. M., Ciornea E., Dumitru G., Ioana C. S. 2010. Data on the activity of superoxide-dismutase and catalase in two summer-old Ctenopharyngodon idella species. Analele Stiintifice ale Universitatii “Alexandru Ioan Cuza” din Iasi Sec. II a. Genetica si Biologie Moleculara, 177–182
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28: 2731–2739
Trelease R. N., Xie W., Lee M. S., Mullen R. T. 1996. Rat liver catalase is sorted to peroxisomes by its C-terminal tripeptide Ala-Asn-Leu, not by the internal Ser-Lys-Leu motif. Eur J Cell Biol, 71: 248–258
Trenzado C., Hidalgo M. C., García-Gallego M., Morales A. E., Furné M., Domezain A., Domezain J., Sanz A. 2006. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture, 254: 758–767
Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39: 44–84
Veal E. A., Day A. M., Morgan B. A. 2007. Hydrogen peroxide sensing and signaling. Mol Cell, 26: 1–14
Young I. S., Woodside J. V. 2001. Antioxidants in health and disease. J Clin Pathol, 54: 176–186
Zámock? M., Furtmüller P. G., Obinger C. 2008. Evolution of catalases from bacteria to humans. Antioxid Redox Signal, 10: 1527–1547
Zámock? M., Koller F. 1999. Understanding the structure and function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol, 72: 19–66

Memo

Memo:
-
Last Update: 2016-01-25