Xiaojing JIA and Cuijuan NIU.Molecular Cloning and Tissue-specific Expression of Cu/Zn and Mn-superoxide Dismutase in the Three-keeled Pond Turtle, Chinemys reevesii[J].Asian Herpetological Research(AHR),2013,4(2):79-89.[doi:10.3724/SP.J.1245.2013.00079]
Click Copy

Molecular Cloning and Tissue-specific Expression of Cu/Zn and Mn-superoxide Dismutase in the Three-keeled Pond Turtle, Chinemys reevesii
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2013 VoI.4 No.2
Page:
79-89
Research Field:
Original Article
Publishing date:
2013-06-25

Info

Title:
Molecular Cloning and Tissue-specific Expression of Cu/Zn and Mn-superoxide Dismutase in the Three-keeled Pond Turtle, Chinemys reevesii
Author(s):
Xiaojing JIA and Cuijuan NIU*
Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
Keywords:
Chinemys reevesii SOD1 SOD2 cDNA cloning mRNA expression
PACS:
-
DOI:
10.3724/SP.J.1245.2013.00079
Abstract:
Both copper/zinc superoxide dismutase (SOD; Cu/Zn-SOD, SOD1) cDNA and manganese SOD (Mn-SOD, SOD2) cDNA were cloned for the first time from the three-keeled pond turtle, Chinemys reevesii, using RT-PCR and RACE methods in this work. The SOD1 cDNA was 749 bp long and consisted of a 32-bp 5'-untranslated region (UTR), a 249-bp 3'-UTR, and a 468-bp open reading frame (ORF) encoding a 155-amino-acid protein with 16.0 kDa predicted molecular mass and 5.95 theoretical isoelectric point (pI). The SOD2 cDNA was 1687 bp long and comprised 94-bp of 5'-UTR, 912-bp 3'-UTR and 681-bp ORF encoding a 226-amino-acid protein with 25.0 kDa predicted molecular mass and 8.83 pI. The deduced amino acid sequence of SOD1 showed relatively high similarity (77.4%–87.1%) and identity (65.4%–74.4%) with the published sequences of SOD1 from other vertebrate species, whereas SOD2 protein shared slightly higher similarity (83.6%–95.6%) and identity (76.1%–88.9%) with other reported vertebrates SOD2s. Phylogenetic analysis revealed that the C. reevesii SOD1 and SOD2 were separately clustered together, and were highly conserved during evolution. Both SOD mRNA expression was detected widely in the brain, liver, muscle, kidney, gut, spleen, lung and heart at variable levels. The highest expression of the two SODs was observed in muscle, and followed in brain, liver, kidney, gut and heart, whereas low transcriptional levels were found in spleen and lung. Meanwhile, high activity of SOD1 was kept in brain, liver, muscle, kidney and heart, and followed in gut, spleen and lung. The activities of SOD2 in brain, liver, muscle, kidney, gut and heart were significantly higher than those in spleen and lung.

References:

Abreu I. A., Cabelli D. E. 2010. Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochem Biophys Acta: Proteins Proteomics, 1804: 263–274
Afonso V., Champy R., Mitrovic D., Collin P., Lomri A. 2007. Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine, 74: 324–329
Almeida J., Diniz Y., Marques S., Faine L., Ribas B., Burneiko R., Novelli E. 2002. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environ Int, 27: 673–679
Bandyopadhyay U., Das D., Banerjee R. K. 1999. Reactive oxygen species: Oxidative damage and pathogenesis. Curr Sci, 77: 658–666
Cho Y. S., Lee S. Y., Bang I. C., Kim D. S., Nam Y. K. 2009. Genomic organization and mRNA expression of manganese superoxide dismutase (Mn-SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes). Fish Shell Immunol, 27: 571–576
Craig P. M., Wood C. M., McClelland G. B. 2007. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol, 293: 1882–1892
Fridovich I. 1986. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol, 58: 61–97
Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annu Rev Biochem, 64: 97–112
Hansen B., R?mma S., Garmo ?. A., Olsvik P., Andersen R. 2006. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol, C: Toxicol Pharmacol, 143: 263–274
Keller J. N., Kindy M. S., Holtsberg F. W., Clair D. K. S., Yen H.-C., Germeyer A., Steiner S. M., Bruce-Keller A. J., Hutchins J. B., Mattson M. P. 1998. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci, 18: 687–697
Ken C. F., Shaw J. F., Wu J. L., Lin C. T. 1998. Molecular cloning of a cDNA coding for copper/zinc superoxide dismutase from zebrafish and its expression in Escherichia coli. J Agric Food Chem, 46: 2863–2867
Kim B. M., Rhee J. S., Park G. S., Lee J., Lee Y. M., Lee J. S. 2011. Cu/Zn- and Mn-superoxide dismutase (SOD) from the copepod Tigriopus japonicus: Molecular cloning and expression in response to environmental pollutants. Chemosphere, 84: 1467–1475
Kim J. H., Rhee J. S., Lee J. S., Dahms H. U., Lee J., Han K. N. 2010. Effect of cadmium exposure on expression of antioxidant gene transcripts in the river pufferfish, Takifugu obscurus (Tetraodontiformes). Comp Biochem Physiol, C: Toxicol Pharmacol, 152: 473–479
Landis G. N., Tower, J. 2005. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev, 126: 365–379
Limón-Pacheco J., Gonsebatt, M. E. 2009. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat. Res.-Genet. Toxicol Environ Mutag, 674: 137–147
Lin C. T., Tseng W. C., Hsiao N. W., Chang H. H., Ken C. F. 2009. Characterization, molecular modelling and developmental expression of zebrafish manganese superoxide dismutase. Fish Shell Immunol, 27: 318–324
Lushchak V. I. 2011a. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol, C: Toxicol Pharmacol, 153: 175–190
Lushchak V. I. 2011b. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol, 101: 13–30
Lushchak V. I., Bagnyukova T. V. 2006. Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol, B: Biochem Mol Biol, 144: 283–289
McCord J. M., Edeas M. A. 2005. SOD, oxidative stress and human pathologies: A brief history and a future vision. Biomed Pharmacother, 59: 139–142
McCord J. M., Fridovich, I. 1969. Superoxide dismutase. J Biol Chem, 244: 6049–6055
Nam Y. K., Cho Y. S., Kim K. Y., Bang I. C., Kim K. H., Kim S. K., Kim D. S. 2006. Characterization of copper, zinc superoxide dismutase from a cartilaginous shark species, Scyliorhinus torazame (Carcharhiniformes). Fish Physiol Biochem, 32: 305–315
Pandey S., Parvez S., Sayeed I., Haque R., Bin-Hafeez B., Raisuddin S. 2003. Biomarkers of oxidative stress: A comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci Total Environ, 309: 105–115
Reaume A. G., Elliott J. L., Hoffman E. K., Kowall N. W., Ferrante R. J., Siwek D. R., Wilcox H. M., Flood D. G., Beal M. F., Brown R. H. 1996. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet, 13: 43–47
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28: 2731–2739
Valdivia P. A., Zenteno-Savín T., Gardner S. C., Alonso Aguirre A. 2007. Basic oxidative stress metabolites in eastern Pacific green turtles (Chelonia mydas agassizii). Comp Biochem Physiol, C: Toxicol Pharmacol, 146: 111–117
Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39: 44–84
Wang Y., Osatomi K., Nagatomo Y., Yoshida A., Hara K. 2011. Purification, molecular cloning, and some properties of a manganese-containing superoxide dismutase from Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol, B: Biochem Mol Biol, 158: 289–296
Winterbourn C. C. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol, 4: 278–286
Yuan Q. S. 2009. Superoxide dismutase. Shanghai, China: East China University of Science and Technology Press, 22–54 (In Chinese)
Zelko I. N., Mariani T. J., Folz R. J. 2002. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol Med, 33: 337–349
Zhang Z. W., Li Z., Liang H. W., Li L., Luo X. Z., Zou G. W. 2011. Molecular cloning and differential expression patterns of copper/zinc superoxide dismutase and manganese superoxide dismutase in Hypophthalmichthys molitrix. Fish Shell Immunol, 30: 473–479

Memo

Memo:
-
Last Update: 2016-01-25