Stanislav VOLYNCHIK.Morphological Variability in Vipera palaestinae along an Environmental Gradient[J].Asian Herpetological Research(AHR),2012,3(3):227-239.[doi:10.3724/SP.J.1245.2012.00227]
Click Copy

Morphological Variability in Vipera palaestinae along an Environmental Gradient
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2012 VoI.3 No.3
Research Field:
Original Article
Publishing date:


Morphological Variability in Vipera palaestinae along an Environmental Gradient
Stanislav VOLYNCHIK*
National Collections of Natural History, Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
Vipera palaestinae geographic variability scalation pattern temperature-dependent trends Viperidae
The effect of local habitat conditions on organisms, including environmentally-induced morphological changes, constitutes an important aspect of macroecology and evolution. The degree of geographic intraspecific variation in body dimensions, corporeal ratios and scalation pattern among male and female Palestine vipers (Vipera palaestinae) in Israel were examined. Univariate and multivariate analyses using 20 variable features relating to metric and meristic characters were applied in order to determine the existence of geographic variability in this species. Univariate analysis revealed that the majority of morphological characters possess relatively minor interregional distinctions, with only a few traits demonstrating significant differences. Discriminant analysis of mixed-gender samples using a combination of variables did not distinguish between geographic groups within each sex. The multifactor approach slightly differentiated between samples when sexes were compared separately, but with much overlap. The continuous sampling method revealed no statistically significant relationship between geographic and metric variables across the distribution range. A weak latitudinal cline was observed in snout-vent length, with both sexes being larger in the south. Noticeable temperature-correlated intraspecific variability was found in both body and tail scale counts but not in head scalation features. Generally, both males and females demonstrate the same phenotype-environment correlation. The spatial variations in external morphology suggest that temperature conditions during early ontogenesis may induce quantitative changes in the scalation pattern of V. palaestinae.


Alexander A. A., Gans C. 1966. The pattern of dermal-vertebral correlation in snakes and amphisbaenians. Zool Mededelingen, 41: 171–190
Andrews R. M., Mathies T. 2000. Natural history of reptilian development: Constraints on the evolution of viviparity. Bioscience, 50: 227–238
Arnold S. J. 1988. Quantitative genetics and selection in natural populations: Microevolution of vertebral numbers in the garter snake Thamnophis elegans. In Weir B. S., Eisen E. J., Goodman M. M., Namkoong G. (Eds.), Proc of the 2nd Intern Conf on Quantitative Genet. Sunderland (MA): Sinauer, 619–636
Arnold S. J. 1993. Foraging theory and prey-size predator-size relations in snakes. In Seigel R. A., Collins J. T. (Eds.), Snakes. Ecology and Behavior. New York: McGraw-Hill, 87–116
Arnold S. J., Bennett A. F. 1988. Behavioural variation in natural populations. V. Morphological correlates of locomotion in the garter snake Thamnophis radix. Biol J Linn Soc, 34: 175–190
Ashton K. G. 2004. Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size. Integr Comp Biol, 44: 403–412
Ashton K. G., Tracy M. C., de Queiroz A. 2000. Is Bergmann’s rule valid for mammals? Am Nat, 156: 390–415
Ashton K. G., Feldman C. R. 2003. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution, 57: 1151–1163
Atkinson D., Sibly R. M. 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol, 12: 235–239
Survey Department. 1956. Atlas of Israel. Jerusalem: Israel Ministry of Labour and Bialik Institute (In Hebrew)
Aubret F., Shine R., Bonnet X. 2004. Adaptive developmental plasticity in snakes. Nature, 431: 261–262
Aubret F., Shine R. 2007. Rapid prey-induced shift in body size in an isolated snake population (Notechis scutatus, Elapidae). Austr Ecol, 32: 889–899
Barash A., Hoofien J. 1956. Reptiles of Israel. Tel-Aviv: Hakibutz Hameuchad Ltd. (In Hebrew)
Bergmann C. 1847. ?ber die Verh?ltnisse der W?rme?konomie der Thiere zu ihrer Gr?sse. Gottinger Studien, 3: 595–708
Beuchat C. A. 1988. Temperature effects during gestation in a viviparous lizard. J Therm Biol, 13(3): 135–142
Bouskila A., Amitai P. 2001. Handbook of Amphibians and Reptiles of Israel. Jerusalem: Keter Publ House Ltd. (In Hebrew)
Brito J. C., Santos X., Pleguezuelos J. M., Fahd S., Llorente G., Parellada X. 2006. Morphological variability of the Lataste’s viper (Vipera latastei) and the Atlas dwarf viper (Vipera monticola): Patterns of biogeographical distribution and taxonomy. Amphibia-Reptilia, 27: 219–240
Cruz F. B., Fitzgerald L. A., Espinoza R. E., Schulte J. A. 2005. The importance of phylogenetic scale in tests of Bergmann’s and Rapoport’s rules: Lessons from a clade of South American lizards. J Evol Biol, 18: 1559–1574
Deeming D. C. 2004. Post-hatching phenotypic effects of incubation in reptiles. In Deeming D. C. (Ed.), Reptilian Incubation: Environment, Evolution and Behaviour. Nottingham: Nottingham University Press, 229–251
Disi A., Modr? D., Ne?as P., Rifai L. 2001. Amphibians and Reptiles of the Hashemite Kingdom of Jordan. An atlas and field guide. Frankfurt am Main: Edit Chimaira
Downes S. J., Shine R. 1999. Do incubation-induced changes in a lizard’s phenotype influence its vulnerability to predators? Oecologia, 120: 9–18
Ehrlich D., Werner Y. L. 1993. The effect of temperature on the number of vertebrae in the desert snake Spalerosophis diadema. Israel J Zool, 39: 57
Fabien A., Bonnet X., Maumelat S., Bradshaw D., Schwaner T. 2004. Diet divergence, jaw size and scale counts in two neighbouring populations of tiger snakes (Notechis scutatus). Amphibia-Reptilia, 25: 9–17
Flatt T., Shine R., Borges-Landaez P. A., Downes S. J. 2001. Phenotypic variation in an oviparous montane lizard (Bassiana duperreyi): The effects of thermal and hydric incubation environments./Biol J Linn Soc, 74: 339 –350
Forsman A. 1991. Adaptive variation in head size in Vipera berus L. populations. Biol J Linn Soc, 43: 281–296
Forsman A., Lindell L. E. 1991.Trade-off between growth and energy storage in male Vipera berus (L.) under different prey densities. Funct Ecol, 5: 717–723
Fox W. 1948. Effect of temperature on development of scutellation in the garter snake, Thamnophis elegans atratus. Copeia, 1948: 252–262
Fox W., Gordon C., Fox M. H. 1961. Morphological effects of low temperature during the embryonic development of the garter snake, Thamnophis elegans. Zoologica, 46: 57–71
Gans C. 1962. Terrestrial locomotion without limbs. Am Zool, 2: 167–182
Gans C. 1974. Biomechanics: An approach to vertebrate biology. Philadelphia: Lippincott
Gans C., Taub A. M. 1965. Segmental correlation between integument and vertebral column in typhlopids (Reptilia, Squamata). Copeia, 1965: 107–108
Hasegawa M., Moriguchi H. 1989. Geographic variation in food habits, body size and life history traits of the snakes on the Izu islands. In Matui M., Hikida T., Goris R. C. (Eds.), Current Herpetology in East Asia. Kyoto: Herpetological Society of Japan, 414–432
Hubert J. 1985. Embryology of the squamata. In Gans C., Billet F. (Eds.), Biology of the Reptilia, 15. New York: John Wiley and Sons, 1–34
Klauber L. M. 1941. The correlation between scalation and life zones in San Diego County snakes. Bull Zool Soc San Diego, 17: 73–79
Klauber L. M. 1945. Herpetological correlations. 1. Correlations in homogeneous populations. Bull Zool Soc San Diego, 21: 5–101
Klauber L. M. 1956. Rattlesnakes. Their Habits, Life Histories and Influence on Mankind, 1st Ed. Berkeley, California: University of California Press
Klein M. 1988. The geomorphology of Israel. In Yom-Tov Y., Tchernov E. (Eds.), The Zoogeography of Israel. Dordrecht, Netherlands: Junk Publishers, 59–78
Kochva E. 2004. Venomous Snakes and Snake Venoms. Israel: Teva HaDvarim (In Hebrew)
Kramer E. 1961. Variation, sexual dimorphismus, wachstum und taxonomie von Vipera ursinii (Bonaparte, 1835) und Vipera kaznakovi Nikolskij, 1909. Rev Suisse Zool, 68: 627–725
Krause M. A., Burghardt G. M., Gillingham J. C. 2003. Body size plasticity and local variation of relative head and body size sexual dimorphism in Garter snakes (Thamnophis sirtalis). J Zool, 261: 399–407
Lindell L. E. 1996. Vertebral number in adders, Vipera berus: Direct and indirect effects on growth. Biol J Linn Soc, 59: 69–85
Lindell L. E., Forsman A., Meril? J. 1993. Variation in number of ventral scales in snakes: Effects on body size, growth rate and survival in the adder, Vipera berus. J Zool, 230: 101–115
Lindsey C. C. 1966. Body sizes of poikilotherm vertebrates at different latitudes. Evolution, 20: 456–465
Lourdais O., Shine R., Bonnet X., Guillon M., Naulleau G. 2004. Climate affects embryonic development in a viviparous snake, Vipera aspis. Oikos, 104: 551–560
Madsen T., Shine R. 1993. Phenotypic plasticity in body sizes and sexual size dimorphism in European grass snakes. Evolution, 47: 321–325
Meiri S. 2007. Size evolution in island lizards. Global Ecol Biogeogr, 16: 702–708
Meiri S. 2011. Bergmann’s Rule – what’s in a name? Global Ecol Biogeogr, 20: 203–207
Meiri S., Dayan T. 2003. On the validity of Bergmann’s rule. J Biogeogr, 30: 331–351
Mendelssohn H. 1963. On the biology of the venomous snakes in Israel. Part I. Isr J Zool, 12: 143–170
Mendelssohn H., Yom-Tov Y. 1999. Mammalia of Israel. Jerusalem: Israel Academy of Sciences and Humanities
Mousseau T. A. 1997. Ectotherms follow the converse to Bergmann’s Rule. Evolution, 51: 630–632
Nilson G., Andrén C. 1986. The mountain vipers of the Middle East – The Vipera xanthina Complex. Bonn Zool Monogr, 20: 1–90
Osgood D. W. 1978. Effects of temperature on the development of meristic characters in Natrix fasciata. Copeia, 1978: 33–47
Pearson D., Shine R., How R. 2002. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol J Linn Soc, 77: 113–125
Peterson C. R., Gibson A. R., Dorcas M. E. 1993. Snake thermal ecology: The causes and consequences of bodytemperature variation. In Seigel R. A., Collins J. T. (Eds.), Snakes: Ecology and Behavior. New York: McGraw-Hill, 241–314
Pincheira-Donoso D., Hodgson D. J., Tregenza T. 2008. The evolution of body size under environmental gradients in ectotherms: Why should Bergmann’s rule apply to lizards? BMC Evol Biol, 8: 68
Ray C. 1960. The application of Bergmann’s and Allen’s rules to the poikilotherms. J Morphol, 106: 85–108
Reed R. N. 2003. Interspecific patterns of species richness, geographic range size, and body size among New World venomous snakes. Ecography, 26: 107–117
Saint-Girons H. 1978. Morphologie externe comparée et systematique des Viperes d’Europe (Reptilia, Viperidae). Rev Suis Zool, 85: 565–595
Santos X., Gonzalez-Solis J., Llorente G. A. 2000. Variation in the diet of the viperine snake Natvix maura in relation to prey availability. Ecography, 23: 185–192
Schwaner T. D. 1985. Population structure of black tiger snakes, Notechis ater niger, on offshore islands of South Australia. In Grigg G. C., Shine R., Ehmann H. (Eds.), The Biology of Australasian Reptiles and Frogs. Sydney, Australia: Surrey Beatty, 35–46
Schwaner T. D., Sarre S. D. 1988. Body size of tiger snakes in southern Australia, with particular reference to Notechis ater serventyi (Elapidae) on Chappell Island. J Herpetol, 22: 24–33
Shine R. 1983. Reptilian viviparity in cold climates: Testing the assumptions of an evolutionary hypothesis. Oecologia, 57: 397–405
Shine R. 2000. Vertebral numbers in male and female snakes: The roles of natural, sexual and fecundity selection. J Evol Biol, 13: 455–465
Shine R. 2002. Do dietary habits predict scale counts in snakes? J Herpetol, 36: 268–272
Shine R., Elphick M. J. 2001. The effect of short-term weather fluctuations on temperatures inside lizard nests, and upon the phenotypic traits of hatchling lizards. Biol J Linn Soc, 72: 555–565
Shine R., Harlow P. 1996. Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology, 77: 1808–1817
Shine R., Madsen T. R. L., Elphick M. J., Harlow P. S. 1997. The influence of nest temperatures and maternal brooding on hatchling phenotypes in water pythons. Ecology, 78: 1713–1721
Simmons J. E. 2002. Herpetological Collecting and Collections Management, Rev. Ed.: Society for the Study of Amphibians and Reptiles, Herpetological Circular, 31
Stuart J. N. 1995. Observations on formalin-inducted darkening of herpetological specimens. SPNHC, Coll Forum, 11: 39–45
Thorpe R. S. 1976. Biometric analysis of geographic variation and racial affinities. Biol Rev, 51: 407–452
Thorpe R. S., Baez M. 1993. Geographic variation in scalation of the lizard Gallotia stehlini within the island of Gran Canaria. Biol J Linn Soc, 48: 75–87
Tomovi? L., D?uki? G. 2003. Geographic variability and Taxonomy of the nose-horned viper, Vipera ammodytes (L.1758), in the central and eastern parts of the Balkans: A multivariate study. Amphibia-Reptilia, 24: 359–377
Volynchik S. 2011. Morphology of Vipera palaestinae: Intraspecific variability and sexual dimorphism. Rus J Herpetol, 18(4): 260–272
Voris H. K. 1975. Dermal scale-vertebra relationships in sea snakes (Hydrophiidae). Copeia, 1975: 746–755
Webb J. K., Brown G. P., Shine R. 2001. Body size, locomotor speed and antipredator behaviour in a tropical snake (Tropidonophis mairii, Colubridae): The influence of incubation environments and genetic factors. Funct Ecol, 15: 561–568
Werner F. 1938. Eine verkannte Viper (Vipera palaestinae n. sp.). Zool Anzeiger, 122: 313–318
Werner Y. L. 1964. Intraspecific and temperature-correlated variations of vertebral numbers in some Near-East geckos (Reptilia: Gekkonidae). Isr J Zool, 13: 131–133
Yan X. F., Tang X. L., Yue F., Zhang D. J., Xin Y., Wang C., Chen Q. 2011. Influence of ambient temperature on maternal thermoregulation and neonate phenotypes in a viviparous lizard, Eremias multiocellata, during the gestation period. J Therm Biol, 36: 187–192
Zuffi M. A. L., Bonnet X. 1999. Italian subspecies of the asp viper, Vipera aspis: patterns of variability and distribution. Ital J Zool, 66: 87–95


Last Update: 2016-03-15