LI Hong,MAO Luxi,SHI Linqiang and JI Xiang.Many-lined Sun Skinks (Mabuya multifasciata) Shift Their Thermal Preferences Downwards When Fasted[J].Asian Herpetological Research(AHR),2010,1(1):36-39.[doi:10.3724/SP.J.1245.2010.00036]
Click Copy

Many-lined Sun Skinks (Mabuya multifasciata) Shift Their Thermal Preferences Downwards When Fasted
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2010 VoI.1 No.1
Research Field:
Original Article
Publishing date:


Many-lined Sun Skinks (Mabuya multifasciata) Shift Their Thermal Preferences Downwards When Fasted
LI Hong1 MAO Luxi1 SHI Linqiang2 and JI Xiang1*
1 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China
2 Hangzhou Key Laboratory for Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
Scincidae feeding condition selected body temperature adaptive response food deprivation
We maintained adult many-lined sun skinks (Mabuya multifasciata; 12 females and 12 males)collected from Hainan (southern China) in September 2006 in two outdoor enclosures to examine the effect of feeding condition on selected body temperature (Tsel). Skinks shifted their thermal preferences when fasted. Temporal variation in Tsel was not found within each sex ? feeding condition combination, and neither in fed nor in fasted skinks did the mean values for Tsel differ between sexes. Body temperatures selected by fed skinks fell within the range from 30.2 to 33.9 °C, and those selected by fasted skinks within the range from 25.1 to 31.8 °C. Body temperatures (31.8 ± 0.3 °C) selected by fed skinks were on average 4.0 °C higher than those (27.8 ± 0.4 °C) selected by fasted skinks. Fasted skinks had no difficulty in attaining higher body temperatures, but they voluntarily shift their thermal preferences downwards to save energy. This finding suggests an adaptive mechanism adopted by many-lined sun skinks to enhance their fitness during the periods when food availability is low.


Andrews R. M. 1998. Latitudinal and elevational variation in body temperatures of Sceloporus lizards. J Therm Biol, 23: 329–334
Angilletta Jr M. J. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford: Oxford University Press
Angilletta Jr M. J., Niewiarowski P. H., Navas C. A. 2002. The evolution of thermal physiology in ectotherms. J Therm Biol, 27: 249–268
Avery R. A. 1982. Field studies of body temperatures and thermoregulation. In: Biology of the Reptilia, Vol. 12, 93–166. Gans C., Pough F. H. (Eds). New York: Academic Press
Bauwens D., Garland Jr T., Castilla A. M., Van Damme R. 1995. Evolution of sprint speed in lacertid lizards: Morphological, physiological, and behavioral covariation. Evolution, 49: 848–863
Bra?a F. 1993. Shifts in body temperature and escape behavior of female Podarcis muralis during pregnancy. Oikos, 66: 216–222
Brown R. P., Griffin S. 2005. Lower selected body temperatures after food deprivation in the lizard Anolis carolinensis. J Therm Biol, 30: 79–83
Christian K. A., Bedford G. S. 1995. Seasonal changes in thermoregulation by the frillneck lizard, Chlamydorsaurus kingii, in tropical Australia. Ecology, 76: 124–132
Daut E. F., Andrews R. M. 1993. The effect of pregnancy on the thermoregulatory behavior of the viviparous lizard Calchides ocellatus. J Herpetol, 27: 6–13
Ellner L. R., Karasov W. H. 1993. Latitudinal variation in the thermal biology of ornate box turtles. Copeia, 447–455
Gatten R. E. 1974. Effect of nutritional status on the preferred body temperature of the turtles Pseudemys scripta and Terrapene ornata. Copeia, 912–917
Gvo?dík L. 2003. Postprandial thermophily in a Danube crested newt, Triturus dobrogicus. J Therm Biol, 28: 545?550
Hammerson G. A. 1987. Thermal behaviour of the snake Coluber constrictor in west-central California. J Therm Biol, 12: 195?197
Hammond K. A., Spotila J. R., Standora E. A. 1988. Basking behavior of the turtle Pseudemys scripta: effects of digestive state, acclimation temperature, sex, and season. Physiol Zool, 61: 69?77
Huey R. B. 1982. Temperature, physiology, and the ecology of reptiles. In: Biology of the Reptilia, Vol. 12, 25?67. C. Gans and F. H. Pough, Eds. New York: Academic Press
Huey R. B., Kingsolver J. G. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol, 4: 131?135
Huang Q. Y. 1999. Scincidae. In: Fauna Sinica, Reptilia, Vol. 2 (Squamata: Lacertilia), 271–360. Zhao E. M., Zhao K. T., Zhou K. Y. (Eds). Beijing: Science Press
Javaid M. Y., Anderson J. M. 1967. Influence of starvation on selected temperature of some salmonids. J Fish Res Board Can, 24: 1515–1519
Ji X., Lin C. X., Lin L. H., Qiu Q. B., Du Y. 2007. Evolution of viviparity in warm-climate lizards: an experimental test of the maternal manipulation hypothesis. J Evol Biol, 20: 1037?1045
Ji X., Lin C. X., Lin L. H., Qiu Q. B., Du Y. 2006. Sexual dimorphism and female reproduction in the many-lined sun skink (Mabuya multifasciata) from China. J Herpetol, 40: 353?359
Lang J. W. 1979. Thermophilic response of the American alligator and the American crocodile to feeding. Copeia, 48?59
Le Galliard J. F., Le Bris M., Clobert J. 2003. Timing of locomotor impairment and shift in thermal preferences during gravidity in a viviparous lizard. Funct Ecol, 17: 877–885
Lin C. X., Zhang L., Ji X. 2008. Influence of pregnancy on locomotor performances of the skink, Mabuya multifasciata: why do females shift thermal preferences when pregnant? Zoology, 111: 188?195
Mathies T., Andrews R. M. 1997. Influence of pregnancy on the thermal biology of the lizard, Sceloporus jarrovi: Why do pregnant females exhibit low body temperatures? Funct Ecol, 11: 498–507
McConnachie S., Alexander G. J. 2004. The effect of temperature on digestive and assimilation efficiency, gut passage time and appetite in an ambush foraging lizard, Cordylus melanotus melanotus. J Comp Physiol B, 174: 99?105
Miles D. B., Fitzgerald L. A., Snell H. L. 1995. Morphological correlates of locomotor performance in hatchling Amblyrhynchus cristatus. Oecologia, 103: 261–264
Morgan I. J., Metcalfe N. B. 2001. The influence of energetic requirements on the preferred temperature of overwintering juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci, 58: 762–768
Nagy K. A. 1983. Ecological energetics. In: Lizard Ecology: Studies of a Model Organism, 24–54. Huey R. B., Pianka E. R., Schoener T. W. (Eds). Cambridge: Harvard University Press
Pough F. H. 1989. Organismal performance and Darwinian fitness: approaches and interpretations. Physiol Zool, 62: 199–236
Shine R. 2003. Locomotor speeds of gravid lizards: placing ‘costs of reproduction’ within an ecological context. Funct Ecol, 17: 526–533
Sievert L. M. 1989. Postprandial temperature selection in Crotaphytus collaris. Copeia, 987–993
Sievert L. M., Andreadis P. 1999. Specific dynamic action and postprandial thermophily in juvenile water snakes, Nerodia sipedon. J Therm Biol, 25: 51–55
Sievert L. M., Jones D. M., Puckett M. W. 2005. Postprandial thermophily, transit rate, and digestive efficiency of juvenile corn snakes, Pantherophis guttatus. J Therm Biol, 30: 354–359
Slip D. J., Shine R. 1988. Thermophilic response to feeding of the diamond python, Morelia s. spilota (Serpentes: Boidae). Comp Biochem Physiol A, 89: 645–650
Wall M., Shine R. 2008. Post-feeding thermophily in lizards (Lialis burtonis Gray, Pygopodidae): laboratory studies can provide misleading results. J Therm Biol, 33: 274?279
Wang T., Zaar M., Arvedsen S., Vedel-Smith C., Overgaard J. 2003. Effects of temperature on the metabolic response to feeding in Python molurus. Comp Biochem Physiol A, 133: 519?527
Witters L. R., Sievert L. 2001. Feeding causes thermophily in the Woodhouse’s toad (Bufo woodhousii). J Therm Biol, 26: 205?208
Xu X. F., Ji X. 2006. Ontogenetic shifts in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in a lacertid lizard, Eremias brenchleyi. Comp Biochem Physiol A, 143: 118?124
Yang J., Sun Y. Y., An H., Ji X. 2008. Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions. J Comp Physiol B, 178: 343?349


Last Update: 2016-03-15